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Building on a method of analysis for the Navier-Stokes equations introduced by Hopf@Math. Ann.117, 764
~1941!#, a variational principle for upper bounds on the largest possible time averaged convective heat flux is
derived from the Boussinesq equations of motion. When supplied with appropriate test background fields
satisfying a spectral constraint, reminiscent of an energy stability condition, the variational formulation pro-
duces rigorous upper bounds on the Nusselt number~Nu! as a function of the Rayleigh number~Ra!. For the
case of vertical heat convection between parallel plates in the absence of sidewalls, a simplified~but rigorous!
formulation of the optimization problem yields the large Rayleigh number bound Nu<0.167 Ra1/221. Non-
linear Euler-Lagrange equations for the optimal background fields are also derived, which allow us to make
contact with the upper bound theory of Howard@J. Fluid Mech.17, 405 ~1963!# for statistically stationary
flows. The structure of solutions of the Euler-Lagrange equations are elucidated from the geometry of the
variational constraints, which sheds light on Busse’s@J. Fluid Mech.37, 457 ~1969!# asymptotic analysis of
general solutions to Howard’s Euler-Lagrange equations. The results of our analysis are discussed in the
context of theory, recent experiments, and direct numerical simulations.@S1063-651X~96!06106-5#

PACS number~s!: 47.27.Te, 03.40.Gc, 47.27.Cn, 47.27.Ak

I. INTRODUCTION

Conventional theoretical approaches to turbulence include
approximate treatments ranging from the imposition of sta-
tistical assumptions and moment hierarchy truncations to the
introduction of scaling hypotheses@1#. Rigorous analyses
based solely on the equations of motion are typically less
ambitious, hindered in part by the lack of a regularity proof
for solutions of the three-dimensional Navier-Stokes equa-
tions @2#. In this paper we focus on a specific fundamental
problem, the rate of heat transport in a layer of incompress-
ible Newtonian fluid, with the goal of deriving quantitative
rigorous results directly from the equations of motionwith-
out anystatistical hypotheses, scaling assumptions, or clo-
sure approximations. Specifically, we establish a practical
framework for estimating the viscous energy dissipation rate,
and thus the convective heat flux, directly from the Bouss-
inesq equations of motion without any additional regularity
assumptions on the solutions. We do this by using the equa-
tions of motion to derive a variational principle for upper
bounds on the time averaged heat transport rate, utilizing a
decomposition that we refer to as the ‘‘background field’’
method. The basis of the principle is a decomposition of the
flow field into a ‘‘background’’ and a ‘‘fluctuation’’ reminis-
cent of, but distinct from, the Reynolds decomposition into
mean and fluctuating components familiar from statistical
turbulence theory. Our approach is a development of Hopf’s
method for producinga priori estimates for solutions of the

Navier-Stokes equations with inhomogeneous boundary con-
ditions@3# and, as shown in the following sections, it appears
more closely related to nonlinear hydrodynamic stability
theory, i.e., the energy method@4#, than to statistical turbu-
lence theory. It applies equally to both laminar~stationary or
time varying! and turbulent flows, yielding rigorous predic-
tions free from uncontrolled approximations, and an interest-
ing a posteriorirelationship with statistical turbulence theory
naturally follows from the analysis.

Consider an incompressible Newtonian fluid confined to
the rectangular volume between rigid isothermal plates as
illustrated in Fig. 1. A vertical temperature gradient of mag-
nitudedT is imposed. In the usual nondimensional units the
fluid’s velocity vector fieldu~x,t!5(u1 ,u2 ,u3) and tempera-
ture fieldT~x,t! satisfy the Boussinesq equations

]u

]t
1u•“u1“p5sDu1s RakT, ~1.1!

“•u50, ~1.2!
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FIG. 1. Fluid is confined between parallel plates of dimension
Lx3Ly , separated by gap of heighth in the z direction. Boundary
conditions are periodic in thex and y directions andT5dT for
z50, T50 for z5h, andu50 for z50 andh.
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]T

]t
1u•“T5DT, ~1.3!

wheres5n/k is the Prandtl number~a ratio of material pa-
rameters, the kinematic viscosityn and thermal diffusivityk!
and Ra5gadTh3/nk is the Rayleigh number~g is the accel-
eration of gravity,a is thermal expansion coefficient,dT is
the temperature drop across the gap, andh is the gap width!.
Compressibility is neglected in all but the buoyancy force
term, the last term in~1.1!, and the pressure fieldp~x,t! is
determined by the divergence-free condition onu. In ~1.1!, k
is the unit vector in thez direction~the 3-direction!. Lengths
are measured in units of the gap widthh and the boundary
conditions in the dimensionless variables are no slip~u50!
on thez50 and 1 planes,T50 on top andT51 on bottom,
and periodic in thex andy directions, with periodsLx/h and
Ly/h, respectively, foru, T, andp. ~From this point on,Lx
and Ly will denote the dimensionless transverse lengths.!
The initial temperature and velocity vector fields
u~x,0!5u0~x! andT~x,0!5T0~x! are square integrable.

The conductive heat flux in the vertical direction is con-
stant:

j5E
0

Lx
dxE

0

Ly
dyE

0

1

dz k•@2“T~x,y,z,t !#5A, ~1.4!

whereA5LxLy is the cross-sectional area. The instantaneous
convective heat flux is

J~ t !5E
0

Lx
dxE

0

Ly
dyE

0

1

dz u3~x,y,z,t !T~x,y,z,t !,

~1.5!

and the instantaneous rate of viscous energy dissipation in
spatial dimensiond ~typically 2 or 3! is

si“ui2
25s (

i , j51

d I ]ui
]xj

I
2

2

, ~1.6!

wherei f i2 denotes theL
2 norm of a functionf ~x!:

i f i25S E
0

Lx
dxE

0

Ly
dyE

0

1

dzu f ~x,y,z!u2D 1/2. ~1.7!

We are concerned with the time averaged convective heat
flux

^J& t5
1

t E0
t

J~ t8!dt8, ~1.8!

and the time averaged energy dissipation rate

^si“ui2
2& t5

1

t E0
t

si“u~ ,t8!i2
2dt8. ~1.9!

We define the Nusselt number as the ratio of the largest
possible long time averaged total heat transport to the con-
ductive heat transport

Nu5 lim sup
t→`

j1^J& t
j

511 lim sup
t→`

1

A K E
0

Lx
dxE

0

Ly
dyE

0

1

dz u3TL
t

,

~1.10!

where the lim sup notation refers to the limit supremum~the
eventual least upper bound!. The largest possible long time
averaged energy dissipation rate per unit mass is denoted«,

«5 lim sup
t→`

^si“ui2
2& t

A
. ~1.11!

The connection between the heat flux and the energy dis-
sipation is seen in the energy evolution equation derived
from ~1.1! by dotting with u, integrating over space, and
integrating by parts using the divergence free condition~1.2!
and the boundary conditions:

d

dt

1

2
iui2

21si“ui2
25s RaJ. ~1.12!

The kinetic energy is uniformly bounded fortP~0,̀ !—this
fact is a by-product of the analysis in this paper—so the
average rate of viscous energy dissipation is proportional to
the time averaged heat flux

«5s Ra~Nu21!. ~1.13!

Hence estimates of the average energy dissipation rate and
bounds on the average flux are interchangeable, and in this
application we will focus on the heat flux. The heat flux is
also directly related to the mean square temperature gradient,
as may be seen by multiplying the temperature evolution
equation~1.3! by T and integrating appropriately:

d

dt

1

2
iTi2

21i“Ti2
25A1J. ~1.14!

The temperature field remains uniformly bounded inL2 ~this
fact may also be shown using some of the methods of analy-
sis in this paper!, so

Nu5 lim sup
t→`

^i“Ti2
2& t

A
. ~1.15!

The ultimate goal is to produce a functional relationship
of the form Nu~Ra,s!. Here we restrict ourselves to produc-
ing rigorous upper bounds on Nu in terms of Ra ands by
formulating a variational principle directly from the Bouss-
inesq equations in which the fundamental constraint is iden-
tified with a stability condition in the sense of the energy
method. The variational problem will be applied in two
ways: ~i! an upper bound is immediately produced by pro-
viding a ‘‘test’’ background field that satisfies the constraints
and ~ii ! optimal background fields will be sought by mini-

5958 53CHARLES R. DOERING AND PETER CONSTANTIN



mizing the bounds over the appropriately constrained set of
test background fields. We derive Euler-Lagrange equations
for the optimal fields, and in an intruiging correspondence
we observe that they are of the same functional form as the
Euler-Lagrange equations for the maximal heat flux in
Howard’s upper bound theory, which relies on an additional
assumption on stationary statistics@5#. The general structure
of the solutions of the Euler-Lagrange equations is deter-
mined by the functional geometry of the constraints, and at
this level we find a further relationship with Busse’s asymp-
totic analysis of Howard’s theory@6#. For the separable ge-
ometry considered here, the simplest Euler-Lagrange equa-
tions, a nonlinear boundary value problem for ordinary
differential equations, have solutions that correspond to the
‘‘single wave number’’ solutions of Howard’s problem. The
next level of complexity, a boundary value problem for two
coupled sets of ordinary nonlinear differential equations, in-
volves two wave numbers and so on. As will be seen, the
transition from one type of solution to another involves a
loss of stability.

The rest of this paper is organized as follows. The energy
method is reviewed in Sec. II, focusing on the variational
aspect of this approach to nonlinear stability. A variational
principle for upper bounds on the time averaged flux is for-
mulated in Sec. III and the nonlinear Euler-Lagrange equa-
tions for the optimal background fields are derived and dis-
cussed in Sec. IV. In Sec. V we use elementary estimates and
asymptotics to produce explicit bounds~culminating with the
large Rayleigh number bound Nu<0.167 Ra1/221!. In Sec.
VI we analyze the optimal background problem to deduce an
improved bound ~Nu21<0.257 Ra3/8! when the Euler-
Lagrange equations take on the simplest structure, which
turns out to be the case for a bounded range of Ra
~Ra<23 300!. Finally, in Sec. VII we compare these results
with experiments, direct numerical simulations, and theories,
pointing out directions for further development of this ap-
proach. For completeness, a brief synopsis of Howard’s up-
per bound theory is provided in the Appendix.

This is the final article in a series of three following the
introduction of this approach in an application to shear tur-
bulence@7#. The first paper of the series developed the gen-
eral approach for a boundary-driven shear layer@8#. Those
results were compared with recent experiments@9# and have
been further developed by others: Marchioro extended the
method for application to time-dependent boundary condi-
tions @10# and Gebhardtet al. reformulated the variational
problem to refine the original analytical estimate@11#. The
second paper in the series dealt with the problem of channel
flow driven by a pressure gradient@12#.

II. ENERGY STABILITY AND THE CALCULUS
OF VARIATIONS

In this section we provide a short review of the elements
of the energy method of nonlinear stability, which plays a
major role in the subsequent analysis. SupposeU~x! andt~x!
are a stationary solution of the Boussinesq equations~1.1!–
~1.3!,

U•“U1“P5sDU1s Rakt, ~2.1!

“•U50, ~2.2!

U•“t5Dt, ~2.3!

satisfying the velocity and temperature boundary conditions.
Consider arbitrary perturbations~also known as fluctuations!
v~x,t! and u~x,t! of the stationary solution at hand, so that
complete dynamic solutionsu~x,t! and T~x,t! are decom-
posed according tou~x,t!5U~x!1v~x,t! andT5t~x!1u~x,t!.
The perturbations satisfy the evolution equations

]v

]t
1v•“v1v•“U1U•“v1“p5sDv1s Raku,

~2.4!

“•v50, ~2.5!

]u

]t
1v•“u5Du2U•“u2v•“t, ~2.6!

with the boundary conditions thatv andu both vanish on the
top and bottom plates~periodic boundary conditions in the
horizontal directions are taken throughout!. Standard integra-
tions by parts using the boundary conditions and~2.5! shows
that theL2 norms of the fluctuations evolve according to

d

dt

1

2
ivi2

21E v•“U•v dx52si“vi2
21s RaE v3u dx,

~2.7!

d

dt

1

2
iui2

21E v•“tu dx52u“ui2
2. ~2.8!

The basic solution is said to be ‘‘energy stable’’ when theL2

norms of the fluctuations decay monotonically.
Combining~2.7! and ~2.8! appropriately, we find

d

dt

1

2 S 1

s Ra
ivi2

21iui2
2D

52E H 1

Ra
u“vu21

1

s Ra
v•“U•v1v•~“t2k!u

1u“uu2J dx. ~2.9!

Hence a sufficient condition for theL2 norms of the fluctua-
tions to decrease is that the right-hand side of~2.9! is always
negative, i.e., that the quadratic functional

IU,t$v,u%:5E H 1

Ra
u“vu21

1

s Ra
v•“U•v

1v•~“t2k!u1u“uu2J dx ~2.10!

is positive for nonvanishing functionsu~x! and divergence-
free vector fieldsv~x! satisfying the fluctuations’ boundary
conditions. When this is the case, the sum of the squares of
the L2 norms of the perturbations in~2.9! will decay expo-
nentially with a minimum decay ratem~0!, given by the solu-
tion of the minimization problem
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m~0!5 infH IU,t$v,u%

1

s Ra
ivi2

21iui2
2 J , ~2.11!

where the infimum is taken over all temperature fieldsu and
divergence-free vector fieldsv satisfying the boundary con-
ditions. Because the numerator and denominator are both
quadratic inu andv, this may be rewritten

m~0!5 infIU,t$v,u%, ~2.12!

where the minimization overv and u is constrained by the
normalization condition

15
1

s Ra
ivi2

21iui2
2. ~2.13!

Straightforward application of the calculus of variations
shows that the temperature and velocity vector fields realiz-
ing the minimum exponential decay rate satisfy the Euler-
Lagrange equations

mv52sDv1“p1 1
2 ~“U1“Utr!•v1 1

2s Ra~“t2k!u,
~2.14!

05“•v, ~2.15!

mu52Du1 1
2v•~“t2k!, ~2.16!

wherep is the Lagrange multiplier enforcing the divergence-
free condition and tr means matrix transpose. Equations
~2.14!–~2.16! constitute a self-adjoint spectral problem
where the eigenvaluem is the Lagrange multiplier enforcing
the normalization constraint in~2.13!. The minimum expo-
nential decay ratem~0! is the lowest~ground state! eigenvalue
of this problem and thus the nonlinear stability condition for
the stationary solution~U,t! may be expressed as the condi-
tion that this eigenvalue problem has a positive spectrum.
Restated, energy stability considerations lead to a variational
problem in ~2.11! or ~2.12!, for which the Euler-Lagrange
equations are the spectral problem in~2.14!–~2.16!.

An increased Rayleigh number, appearing as it does as the
prefactor of an indefinite operator in~2.14!, generally leads
to a decrease in nonlinear stability as measured by the posi-
tive magnitude of the lowest eigenvalue. Note that negative
eigenvalues in the spectral problem for energy stability do
not imply that the base solution isnot a physically possible
time asymptotic solution; it merely indicates the existence of
initially nondecaying transients. It is necessary to look at the
linearized eigenvalue problem to determine instability for
small perturbations@13#.

The purely conductive solution

U~x!50, ~2.17!

t~x!512z ~2.18!

is a case in point. The energy stability eigenvalue problem
for this solution is

mv52sDv1“p2s Raku, ~2.19!

05“•v, ~2.20!

mu52Du2v3 , ~2.21!

where we recognize the same eigenvalue problem as thelin-
earizedstability problem derived from Eqs.~1.1!–~1.3!. The
convection stability problem is a special case where the nec-
essary and sufficient conditions for stability and instability
match: Rac

~nonlinear!5Rac
~linear!5Rac.1707. This is also a spe-

cial case where the Prandtl number drops out of the stability
question, i.e., Rac does not depend ons, but only on the
aspect ratio of the convection cell (Lx ,Ly).

For Ra,Rac , then, these considerations imply that the
unique time asymptotic state of the system at hand is the
pure conductive state in~2.17! and ~2.18!. Hence, in that
case the long time averaged viscous energy dissipation rate
vanishes~«50! and the long time averaged heat transport is
conductive ~Nu51!. Both linear and nonlinear stability
theory remain silent concerning« and Nu beyond the critical
Rayleigh number, but as will be shown in the next section,
remarkably similar mathematical questions@i.e., the spectral
analysis of a linear operator as in~2.14!–~2.16!# are relevant
to the behavior of« and Nu beyond the critical Rayleigh
number, even into the turbulent regime.

III. ENERGY STABILITY AND ENERGY DISSIPATION

Long time limits of finite time averages need not exist
even if finite time averages are bounded. Moreover, the long
time averages in Eqs.~1.8! and~1.9! need not be unique: for
even if the limitt→` did exist, it would generally depend on
the initial conditions. Eventual bounds on the long time av-
erages~the limit suprema! exist, nevertheless, and we may
producea priori estimates for those bounds directly from the
equations of motion.

In this section we prove a variational principle for upper
bounds on the largest possible long time averaged heat flux,
expressing the upper estimate as an infimum over a con-
strained set of functions. As will be seen, the constraint is an
effective ~energy! stability constraint on flow and tempera-
ture fields. The variational bound is analogous to a Rayleigh-
Ritz variational principle wherein upper estimates may be
deduced without solving the entire minimization problem;
just producing test functions satisfying the constraints is suf-
ficient for that purpose.

To see how the bounds come about, we start by consid-
ering stationary solutions not to the equations of motion, but
to a related set of partial differential equations. LetU~x! and
t~x! satisfy

U•“U1“P5s Rakt, ~3.1!

“•U50, ~3.2!

U•“t50, ~3.3!

along with the boundary conditions~U50 for z50 and 1,
t51 for z50, t50 for z51, and everything periodic in the
horizontal directions!. These are an ‘‘inviscid’’ version of
the stationary Boussinesq equations, characterized by the ab-
sence of the Laplacian terms. Many solutions to these equa-
tions exist and an entire class of explicit solutions will be
produced below. We refer to a solution~U,t! to Eqs.~3.1!–
~3.3! as ‘‘background’’ flow and temperature fields.
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Consider arbitrary perturbations~fluctuations! v~x,t! and
u~x,t! of the background fields, so that complete solutions
u~x,t! andT~x,t! are decomposed according tou~x,t!5U~x!
1v~x,t! andT5t~x!1u~x,t!. The perturbations satisfy

]v

]t
1v•“v1v•“U1U•“v1“p5sDv1sDU1s Raku,

~3.4!

“•v50, ~3.5!

]u

]t
1v•“u5Du1Dt2U•“u2v•“t, ~3.6!

with the boundary conditions thatv andu both vanish on the
top and bottom plates~same boundary conditions as for the
energy stability analysis!. TheL2 norms of these fluctuations
evolve according to

d

dt

1

2
ivi2

21E v•“U•v dx52si“vi2
22sE “v:“U dx

1s Ra E v3u dx, ~3.7!

d

dt

1

2
iui2

21E v•“tu dx52i“ui2
22E “u•“t dx.

~3.8!

Note that norms of the gradients of the full solutions satisfy

i“ui2
25i“Ui2

212sE “v:“U dx1i“ui2
2, ~3.9!

iTi2
25iti2

212E “u•“t dx1iui2
2, ~3.10!

which may be used to eliminate the cross terms~involving
“v:“U and “u•“t! on the right-hand sides of~3.7! and
~3.8!:

d

dt

1

2
ivi2

21E v•“U•v dx52
s

2
i“vi2

22
s

2
iui2

2

1
s

2
i“Ui2

21s Ra E v3u dx,

~3.11!

d

dt

1

2
iui2

21E v•“tu dx52 1
2 i“ui2

22 1
2 i“Ti2

21 1
2 i“ti2

2.

~3.12!

Combining~3.11! and ~3.12! appropriately, we find

d

dt

1

2 S 1

s Ra
ivi2

21iui2
2D1

1

2 Ra
i“ui2

21 1
2 i“Ti2

2

5
1

2 Ra
i“Ui2

21 1
2 i“ti2

22E H 1

2 Ra
u“vu2

1
1

s Ra
v•“U•v1v•~“t2k!u1 1

2 u“uu2J dx.
~3.13!

The time average of~3.13! yields

1

t S 1

s Ra
iv~•,t !i2

22
1

s Ra
iv~•,0!i2

21iu~•,t !i2
2

2iu~•,0!i2
2D1

1

Ra
^i“ui2

2& t1^i“Ti2
2& t

5
1

Ra
i“Ui2

21i“ti2
212K 2E H 1

2 Ra
u“vu2

1
1

s Ra
v•“U•v1v•~“t2k!u

1 1
2 u“uu2J dxL

t

. ~3.14!

Becauseu, v, T, andu stay bounded inL2 ~we do not prove
this fact explicitly, but it follows from some of methods de-
veloped here; see the analogous argument in Ref.@7#, for
example! we may take the long time limit supremum of
~3.14! combined with the time averaged versions of~1.12!
and ~1.14! to obtain

A12 lim sup
t→`

^J& t5
1

Ra
i“Ui2

21i“ti2
2

1 lim sup
t→`

^22HU,t$v,u%& t ,

~3.15!

where the quadratic functionalHU,t$v,u% of v and u is de-
fined by

HU,t$v,u%:5E H 1

2 Ra
u“vu21

1

s Ra
v•“U•v

1v•~“t2k!u1 1
2 u“uu2J dx. ~3.16!

The argument now proceeds by noting thatif HU,t$v,u%
>0, i.e., if it is a non-negative quadratic form for
divergence-free vector fieldsv and functionsu satisfying the
fluctuations’ boundary conditions,thenthe background fields
provide an upper limit on the energy dissipation rate and
convective heat transport:

A12 lim sup
t→`

^J& t<
1

Ra
i“Ui2

21i“ti2
2. ~3.17!
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The conditions onU and t imposed by the constraintHU,t
>0 are remarkably analogous to the energy stability crite-
rion IU,t.0 for stationary solutions of the Boussinesq equa-
tions:HU,t and IU,t differ only by coefficients of 2 in their
positive definite terms in the integrand. Unraveling~3.17!,
we deduce the heat transport bound

Nu<
1

2
1

1

2A S 1Ra i“Ui2
21i“ti2

2D ~3.18!

provided that the fieldsU andt ~a! are solutions of the ‘‘in-
viscid’’ equations~3.1!–~3.3! satisfying the boundary condi-
tions for the stationary Boussinesq problem and~b! are
‘‘stable’’ in the sense thatHU,t is non-negative.

We will refer to the apparent marginal energy stability
condition on acceptable background flow and temperature
fields as thespectral constraint. Exploiting this analogy fur-
ther, we will also refer to background fields~U,t! with
HU,t.0 as stable background fields and those withHU,t
>0 asmarginally stablebackground fields. Indeed, in direct
analogy to the energy stability problem, whether or not
HU,t is non-negative is determined by the sign ofl~0!, given
by the solution of the minimization problem

l~0!5 infH HU,t$v,u%

1

s Ra
ivi2

21iui2
2 J . ~3.19!

The infimum is to be taken over all temperature fieldsu and
divergence-free vector fieldsv satisfying the fluctuations’
boundary conditions. Further, because the numerator and de-
nominator are both quadratic inu andv, this may be rewrit-
ten

l~0!5 infHU,t$v,u%, ~3.20!

where the minimization overv and u is additionally con-
strained by the normalization condition

15
1

s Ra
ivi2

21iui2
2. ~3.21!

The temperature and velocity vector fields realizing the mini-
mum in ~3.19!, or ~3.20! and ~3.21! satisfy the Euler-
Lagrange equations

lv52sDv1“p1~“U1“Utr!•v1s Ra~“t2k!u,
~3.22!

05“•v, ~3.23!

lu52Du1v•~“t2k!, ~3.24!

wherep is the Lagrange multiplier enforcing the condition
“•v50 and tr means matrix transpose. Equations~3.22!–
~3.24! constitute a self-adjoint spectral problem, the eigen-
valuel being the Lagrange multiplier enforcing the normal-
ization constraint in~3.21!. The extremuml~0! is the lowest
~ground state! eigenvalue of this problem and thus the spec-
tral constraint on the background fields~U,t! is the condition
that this eigenvalue problem has a non-negative spectrum,
i.e., l~0!>0.

Restated, time averaged energy evolution considerations
lead to the bounds in~3.17! and ~3.18! subject to the con-
straint onHU,t , leading in turn to the variational problem in
~3.19!, or ~3.20!–~3.21!, for which the Euler-Lagrange equa-
tions are the spectral problem in~3.22!–~3.24!. The first
challenge is to produce appropriate background fields and
verify the spectral constraint, which will be done explicitly
in Sec. V. Ultimately the goal is to produce thebestback-
ground fields, which will themselves be the solution of a
constrained minimization problem where the spectral con-
straint, itself the result of a minimization problem, is im-
posed. The next section is concerned with developing a ver-
sion of the ‘‘ultimate’’ constrained variational problem and
to deriving the associated Euler-Lagrange equations for op-
timal background fields. Afterward, in Sec. VI, the optimal
background fields will be analyzed to produce improved
bounds over a restricted range of Ra.

IV. VARIATIONS ON A VARIATION:
OPTIMAL BACKGROUND FIELDS

Restrict attention to the class of background fields consist-
ing of horizontally stratified temperature profiles and plane
parallel shear flows:

U~x!5 iU~z!, ~4.1!

t~x!5t~z!, ~4.2!

whereU(0)505U(1), t~0!51, andt~1!50. It is easy to
see that any such functions satisfy the background field equa-
tions ~3.1!–~3.3!. Only the shear rate and thermal gradients
enter into the problem from this point on, so we introduce
the functions

f~z!5
dU~z!

dz
, ~4.3!

c~z!511
dt~z!

dz
, ~4.4!

which are in one-to-one correspondence with the background
profilesU(z) and t(z) when they are constrained to have
mean zero:

E
0

1

f~z!dz50, ~4.5!

E
0

1

c~z!dz50. ~4.6!

Then the upper bound problem can be cast in the form of a
variational problem. In the preceding section we proved the
following.

Theorem.For every solution of Eqs.~1.1!–~1.3! with the
prescribed boundary conditions,

Nu<11 infH 12 1

Ra E0
1

f~z!2dz1
1

2 E
0

1

c~z!2dzJ ,
~4.7!
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where the minimization is performed over mean-zero func-
tionsf andc constrained by the spectral condition that

0<Hf,c$v,u%5E H 1

2 Ra
u“vu21

1

s Ra
f~z!v1v3

1@c~z!22#v3u1 1
2 u“uu2J dx, ~4.8!

whereHf,c$v,u% is defined for divergence-free vector fields
v~x! and temperature fieldsu satisfying the fluctuations’
boundary conditions.

The spectral constraint is equivalent to the non-negativity
of the lowest~‘‘ground state’’! eigenvaluel~0! of the self-
adjoint problem

lv152sDv11
]p

]x
1f~z!v3 , ~4.9!

lv252sDv21
]p

]y
, ~4.10!

lv352sDv31
]p

]z
1f~z!v11s Ra@c~z!22#u,

~4.11!

05
]v1
]x

1
]v2
]y

1
]v3
]z

, ~4.12!

lu52Du1@c~z!22#v3 , ~4.13!

with boundary conditionsv50 andu50 for z50 and 1 and
everything periodic inx and y. In the above,p is the
Lagrange multiplier enforcing incompressibility andl is the
Lagrange multiplier enforcing the natural normalization for
the eigenfunctions,

15
1

s Ra
ivi2

21iui2
2. ~4.14!

In the following we will use the notationl~0!5l~0!$f,c% to
explicitly display the functional dependence of the ground
state eigenvalue on the background profile functionsf and
c.

The one-sided nature of the spectral constraint
~l~0!$f,c%>0! makes the variational problem for the extre-
mum temperature and flow profiles appear nonstandard.
However, a simple observation allows us to transform the
constraint into an equality~l~0!$f,c%50!, making way for the
application of the usual method of Lagrange multipliers to
implement it. The key observation is that the set of back-
ground profiles [f(z),c(z)] satisfying l~0!$f,c%>0 is con-
vex in the Hilbert space of pairs of mean zero, square inte-
grable functions on@0,1#. This means that if~f1,c1! and
~f2,c2! each satisfy the spectral constraint, then for 0<t<1
the convex combination [tf11(12t)f2 ,tc11(12t)c2]
also satisfies the spectral constraint. This is seen by writing
l~0!$f1,c1% andl~0!$f2,c2% in the variational forms

l~0!$f1 ,c1%5 infE H 1

2 Ra
u“vu21

1

s Ra
f1~z!v1v3

1@c1~z!22#v3u1 1
2 u“uu2J dx, ~4.15!

l~0!$f2 ,c2%5 infE H 1

2 Ra
u“vu21

1

s Ra
f2~z!v1v3

1@c2~z!22#v3u1 1
2 u“fu2J dx, ~4.16!

where the infima are taken over the set of normalized@ac-
cording to~4.14!# divergence-freev’s andu’s satisfying the
fluctuations’ boundary conditions. When bothl~0!$f1,c1%
and l~0!$f2,c2% are non-negative, then the right-hand sides
above are non-negative forany appropriatev andu. Hence
for any such appropriatev andu, the convex combination of
the functionals is non-negative,

0<E H 1

2 Ra
u“vu21

1

s Ra
@ tf11~12t !f2#v1v3

1@ tc11~12t !c222#v3u1 1
2 u“uu2J dx

5Htf11~12t !f2 ,tc11~12t !c2
, ~4.17!

and taking the infimum overv andu we deduce

0<l~0!$tf11~12t !f2 ,tc11~12t !c2%. ~4.18!

This convexity property implies that the minimization in
~4.7! is realized in one of two ways. The absolute minimum
possible value of the Nusselt number~Nu51! is realized at
the origin of the space of profiles, i.e.,~f,c!5~0,0!, and this
will be the solution of the variational problem if the pair
~0,0! satisfies the spectral constraint; see Fig. 2~a!. A suffi-
cient condition for this is stability of the pure conduction
state, the state of affairs at low Rayleigh number. At high Ra,
the origin is no longer contained in the convex set of spec-
trally constrained background functions and the bound on
Nu21 is precisely the square of the distance from the origin
to the convex set, where we utilize theL2 norm

i~f,c!i5S 1

Ra E0
1

f~z!2dz1E
0

1

c~z!2dzD 1/2. ~4.19!

The distance to a nonempty convex setnot containing the
origin is uniquelyrealized by a point on theboundaryof the
set as illustrated in Fig. 2~b!. ~The existence of the solution is
guaranteed by the nonemptiness of the convex set, which we
shall establish in Sec. V.! We conclude that when the origin
does not satisfy the spectral constraint, the minimization
problem is solved by a background profile just marginally
satisfying it, i.e., the optimal background profile pair ison
the isospectral surfacel~0!$f,c%50.

Now we are in a position to apply conventional con-
strained variational calculus. For Ra high enough so that
~f,c!5~0,0! does not satisfy the spectral constraint, the
Euler-Lagrange equations for the optimal background fields
are
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05
d

d~f,c! H 1
2 i~f,c!i21aE

0

1

f~z!dz1bE
0

1

c~z!dz

1gl~0!$f,c%J , ~4.20!

wherea, b, andg are Lagrange multipliers. Explicitly, these
equations are

05f~z!1a1g
dl~0!

df~z!
, ~4.21!

05c~z!1b1g
dl~0!

dc~z!
, ~4.22!

where the variational derivatives of the ground state eigen-
value are evaluated by the usual method of regular spectral
perturbation theory:

dl~0!

df~z!
52E

0

Lx
dxE

0

Ly
dy v1

~0!~x,y,z!v3
~0!~x,y,z!,

~4.23!

dl~0!

dc~z!
52E

0

Lx
dxE

0

Ly
dy v3

~0!~x,y,z!u~0!~x,y,z!.

~4.24!

In the above,v~0! andu~0! are the ground state eigenfunctions
of ~4.9!–~4.13! normalized according to~4.14!. The
Lagrange multipliersa and b are chosen to enforce the
mean-zero constraint onf and c so ~4.21! and ~4.22! be-
come

f~z!52gS E
0

Lx
dxE

0

Ly
dy v1

~0!~x,y,z!v3
~0!~x,y,z!

2E
0

1

dz8E
0

Lx
dxE

0

Ly
dy v1

~0!~x,y,z8!v3
~0!~x,y,z8! D

~4.25!

and

c~z!52gS E
0

Lx
dxE

0

Ly
dy v3

~0!~x,y,z!u~0!~x,y,z!

2E
0

1

dz8E
0

Lx
dxE

0

Ly
dy v3

~0!~x,y,z8!u~0!~x,y,z8! D ,
~4.26!

whereg is the remaining Lagrange multiplier used to enforce
the marginal stability constraint.

The equations to be solved, then, are the ground state
equations~4.9!–~4.13! closed by~4.25! and ~4.26!; this is a
nonlinear and nonlocal elliptic boundary value problem in
which the Lagrange multiplierg is to be adjusted so thatl~0!

vanishes. The optimal flow and temperature profiles are sub-
sequently reconstructed from the resulting ground state
eigenfunctionsv~0! andu~0! via ~4.25! and ~4.26!.

The Euler-Lagrange equations~4.25! and~4.26! may also
be derived from a geometric argument in a picture that gives
us some insight into the nature of the solutions of the opti-
mization problem. Assume for the moment that the margin-
ally stable isospectral surface wherel~0!50 is smooth in the
sense that there exists a unique, one-dimensional normal vec-
tor at and near the optimal point. Referring to the sketch of
the geometry in Fig. 2~b!, it is clear that the optimal solution
is that point in the Hilbert space enjoying the property that
the vector connecting the origin to the isospectral surface
l~0!50 is aligned with the normal vector to the isospectral
surface. The normal vector is precisely the functional deriva-
tive [dl (0)/df(z),dl (0)/dc(z)] projected onto the space of
pairs of mean-zero functions. Letg be the proportionality
constant between the vector [f(z),c(z)]—from the origin
to the optimal point—and the normal vector. The Euler-
Lagrange equations are then~4.25! and~4.26!. This geomet-
ric viewpoint also makes it clear that when the origin is not
contained in the set withl~0!.0, then the Lagrange multi-
plier g is necessarily positive~the vectors are parallel and not
antiparallel!.

In view of the horizontal translation invariance of the ei-
genvalue problem in~4.9!–~4.13!, the equations may be
separated by the Fourier transform in the horizontal direc-
tions and this suggests a strategy for solving the Euler-
Lagrange equations. We define the horizontally Fourier
transformed variables

FIG. 2. Illustration of the functional convexity property enjoyed
by the background fields~f,c! in ~a two-dimensional slice of! the
function space of pairs of mean-zero functions on the unit interval.
The origin is the optimal point when it is contained in the convex
set, as in~a!, and the unique optimal point~dot! occurs on the
boundary when the origin is not contained in the set, as in~b!. In ~b!
the normal vectors to the isospectral surface of marginally stable
profiles are shown at two points. Typically~dashed! the normal is
not aligned with vector from the origin, while the optimal~solid!
occurs when the vector from the origin is parallel to the normal
vector.
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S uk~z!

vk~z!

wk~z!

qk~z!

zk~z!

D
5

1

LxLy
E
0

Lx
dx e2 ik1xE

0

Ly
dy e2 ik2yS v1~x,y,z!

v2~x,y,z!

v3~x,y,z!

p~x,y,z!

u~x,y,z!

D ,
~4.27!

where k5(k1 ,k2)5(2pn1/L1,2pn2/L2) and (n1 ,n2) are
pairs of integers. Then]/]x→ ik1 and]/]y→ ik2 and, using
the notationk25uku25k 1

21k 2
2 andD5]/]z, the eigenvalue

problem becomes

lkuk5s~2D21k2!uk1 ik1qk1f~z!wk , ~4.28!

lkvk5s~2D21k2!vk1 ik2qk , ~4.29!

lkwk5s~2D21k2!wk1Dqk1f8~z!uk

1s Ra@c~z!22#zk , ~4.30!

05 ik1uk1 ik2vk1Dwk , ~4.31!

lkzk5~2D21k2!zk1@c~z!22#wk , ~4.32!

with boundary conditionsuk(z), vk(z), wk(z), and zk(z)
vanishing atz50 and 1. The ground state eigenvalue will be
denotedlk

(0)5lk
(0)$f,c%.

As illustrated in Fig. 3, for each wave vectork there is a
convex set of stable background profiles characterized by
lk
(0)$f,c%.0, with an isospectral surface of marginally

stable profiles given bylk
(0)$f,c%50. The set over which

the minimization takes place is the intersection of the stable
sets for all the wave numbers:

$~f,c!ul~0!$f,c%>0%5ùk$~f,c!ulk
~0!$f,c%>0%.

~4.33!

When the overall marginally stable isospectral surface
l~0!$f,c%50 is smooth, then the surface is realized by one of
the single wave number isospectral surfaces~modulo nonge-
neric tangencies of isospectral surfaces!. The optimal point
@fk(z),ck(z)# on thekth isospectral surface is also charac-
terized by the property that it is parallel to~the projection
onto mean-zero functions of! the functional derivative
@dlk

(0)/df(z),dlk
(0)/dc(z)#. That is, it is the solution to

~4.28!–~4.32! closed by the relations

fk~z!5gkS uk~0!~z!*wk
~0!~z!1uk

~0!~z!wk
~0!~z!*

2E
0

1

$uk
~0!~z8!*wk

~0!~z8!1uk
~0!~z8!wk

~0!~z8!* %dz8D
~4.34!

and

ck~z!5gkS zk
~0!~z!*wk

~0!~z!1zk
~0!~z!wk

~0!~z!*

2E
0

1

$zk
~0!~z8!*wk

~0!~z8!1zk
~0!~z8!wk

~0!~z8!* %dz8D .
~4.35!

Expressions~4.34! and ~4.35! inserted into~4.28!–~4.32!
result in ordinary differential equations, a nonlinear bound-
ary value problem where the Lagrange multipliergk is to be
adjusted to enforce thelk

(0)50 constraint. The true optimal
background profile is that which is furthest from the
origin—it must be furthest for otherwise it would be exterior
to the stable region of some other wave number—so the
strategy is to solve the problem for each individualk and
then choose the one with the largest value ofi~f,c!i. The
minimization scheme proposed for eachk has been shown to
be consistent and the entire process has been carried out for
a model problem@14#, and to illustrate how this process
works in practice we will apply the formalism to derive ex-
plicit upper bounds for the heat transport in Sec. V. Further-
more, it is straightforward to implement this procedure
~minimize for eachk and then maximize overk! numerically
and, as will be described in full detail elsewhere@15#, the
k by k strategy is successful, at least for a limited range of
Rayleigh numbers.

There is a crucial point about this solution process that
must be recognized: whenever a candidate background field
is derived as the result of the min-max process described
above it must be stable forall wave numbers in order to be
the true solution. The single-k isospectral surfaces move
around as Ra varies, and what can go wrong with the proce-
dure outlined above is that the optimal profile may become
degenerate. The onset of degeneracy means that the optimal
has ground state eigenvalue zero for distinct wave numbers,
signaling an intersection of the single wave number isospec-
tral surfaces. This indicates that the optimal for nearby val-
ues of Ra willnot generally be on a smooth portion of the
overall marginally stable isospectral surface, as illustrated in
Fig. 4. It is apparent that the optimal is then no longer char-
acterized by the criteria given above relating the normal to

FIG. 3. Isospectral surfaces in~a two-dimensional slice of! the
space of background functions, for three different wave numbers.
The convex set over which the variation takes place is the intersec-
tion of the convex sets for each wave number. The optimal profile is
on one of the isospectral surfaces, furthest from the origin.

53 5965VARIATIONAL BOUNDS ON ENERGY . . . . III. . . .



the vector from the origin: indeed, there is not a unique nor-
mal vector at the optimal point and the optimal is further
from the origin than the maximum distance to the single-k
isospectral surfaces individually.

The problem may still be interpreted geometrically. Re-
ferring to Fig. 5 for the case of doubly degenerate optimal
background fields, the question is how to characterize the
closest point to the origin on the intersection of two margin-
ally stable isospectral surfaces. The codimension-2 set where
the two codimension-1 isospectral surfaces intersect does not
have a normal vector, but instead a normal 2-form~associ-
ated with the linear subspace spanned by the two simulta-
neous normal vectors corresponding to the two isospectral
surfaces!. The generalization of the geometric criterion for
the optimal is that the vector connecting the origin to the
optimal point must be spanned by~i.e., a linear combination
of! the normal vectors making up the 2-form at the optimal
point.

Let k1 and k2 be the wave vectors of the optimal back-
ground field, withl1

~0!$f,c% andl2
~0!$f,c% the corresponding

ground state eigenvalue functionals. Then the Euler-
Lagrange equations expressing this criterion are

f~z!5g1S dl1
~0!

df~z!
2E

0

1 dl1
~0!

df~z8!
dz8D

1g2S dl2
~0!

df~z!
2E

0

1 dl2
~0!

df~z8!
dz8D ~4.36!

and

c~z!5g1S dl1
~0!

dc~z!
2E

0

1 dl1
~0!

dc~z8!
dz8D

1g2S dl2
~0!

dc~z!
2E

0

1 dl2
~0!

dc~z8!
dz8D , ~4.37!

where

dl i
~0!

df~z!
5ui

~0!~z!*wi
~0!~z!1ui

~0!~z!wi
~0!~z!* ~4.38!

and

dl i
~0!

dc~z!
5z i

~0!~z!*wi
~0!~z!1z i

~0!~z!wi
~0!~z!* . ~4.39!

Expressions~4.36! and ~4.37! are then to be inserted into
~4.28!–~4.32! for k1 andk2 simultaneously, which constitute
a closed system to be solved while adjusting the Lagrange
multipliersg1 andg2 so that bothl1

~0! andl2
~0! vanish.

When the optimal background fields are doubly degener-
ate they lie on a set of codimension 2 in the space of back-
ground functions and the Euler-Lagrange equations are a
system of two coupled nonlinear ordinary differential bound-
ary value problems.

This process may be generalized: when the optimal back-
ground fields areN-fold degenerate they lie on a set of codi-
mensionN in the space of background functions and the
Euler-Lagrange equations are a system ofN coupled nonlin-
ear ordinary differential boundary value problems. The cou-
pling occurs through the simultaneous appearance of contri-
butions ofN wave vectors in the relationship between the
optimal profiles and the ground state eigenfunctions accord-
ing the generalization of the formulas above,

f~z!5(
i51

N

g iS dl i
~0!

df~z!
2E

0

1 dl i
~0!

df~z8!
dz8D , ~4.40!

c~z!5(
i51

N

g iS dl i
~0!

dc~z!
2E

0

1 dl i
~0!

dc~z8!
dz8D . ~4.41!

Solving theN equations fork1, . . . ,kN simultaneously, each
of the N Lagrange multipliersgi is to be adjusted so that
l i
(0)50, i51, . . . ,N, placing the point on the marginally

stable isospectral surface.
It is worthwhile noting that the solutions of all these

classes of problems are indeed solutions of the originally
posited Euler-Lagrange equations in~4.25! and~4.26!. In the
partial differential equation formulation, the nonlocal nonlin-
earity allows for separation via Fourier transformation in the
horizontal variables, but the separation may be to into a vary-
ing number of components depending on the coupling of
different wave vectors in the expression for the optimal

FIG. 4. If the ground state at the optimal is not unique, then each
of the degenerate ground states gives rise to a normal and in general
they need not coincide. In that case the isospectral surface is not
smooth at the optimal and the min-max procedure is invalid.

FIG. 5. Isospectral surfaces in~a three-dimensional slice of! the
space of background functions, for two different wave numbers.
This is the picture when the ground state of the optimal background
fields is doubly degenerate. The optimal point occurs when the
vector from the origin lies in the plane spanned by the two normals
along the codimension-2 surface.

5966 53CHARLES R. DOERING AND PETER CONSTANTIN



background fields. This is what corresponds to the hierarchy
of classes of solutions, to our identification of the degeneracy
condition, and to the presence of higher-dimensional
‘‘creases’’ in the marginal isospectral surface. In light of
these correspondences we may interchangeably refer to the
optimal fields as lying on codimension-N hypersurfaces, as
being background fields with anN-fold degenerate ground
state, or as comprisingN wave vector solutions of the Euler-
Lagrange equations.

For the case of vanishing background flow~f[0 from the
beginning!, the Euler-Lagrange equations derived here for
the optimal background temperature profile are of the same
functional form as the Euler-Lagrange equations in
Howard’s @5# upper bound theory for turbulent convection.
In that work the variational problem is to determine the
maximum heat transport constrained by the power balance
derived from the Boussinesq equations supplemented with
the hypothesis of ‘‘statistical stationarity,’’ i.e., the assump-
tion that horizontal spatial averages are time independent
@5,16#. This correspondence in the forms of the resulting
Euler-Lagrange equations is surprising at least because the
present analysis involves no statistical hypothesis. We note,
however, that the actual differential equations to be solved
are not precisely the same due to different appearances of
Lagrange multipliers, which must be adjusted to satisfy dif-
ferent constraints. We have not been able to identify a direct
connection between the fundamental variational problems
posed by Howard and ourselves: only this quantitative rela-
tionship at the level of the optimal background profile ap-
pears to be the common feature of the two optimization
problems. But this correspondence is enough to allow for a
quantitative comparison of the results of the two approaches,
and the relationship between the heat transport bounds in
Howard’s theory and the bounds derived by the method de-
veloped here will be discussed further in Sec. VI and the
Appendix, where a rigorous connection between the two is
established.

In his original paper@5# Howard recognized the variety of
solutions to the Euler-Lagrange equations that potentially ex-
ist, but he concentrated on deriving estimates under the fur-
ther presumption that the maximizing fields were of the
single wave number variety. Busse’s asymptotic analysis of
Howard’s Euler-Lagrange equations@6# implied that the
maximizing fields are single wave number solutions only for
a bounded range in Ra and that in a sequence of discrete
transitions theN wave number solutions realize the maxima
whereN increases without bound as Ra increases. If this
same phenomenon occurs in the background flow formula-
tion, then the picture that emerges is one where the ground
state of the optimal profile necessarily becomes increasingly
degenerate as Ra increases. That is, the optimal profile be-
comes increasingly marginal in the sense that it is marginally
stable for an ever increasing number of wave numbers. We
will return to this point further in the discussion in the con-
cluding section, but now we turn to the problem of producing
explicit bounds, establishing first that the convex set of
stable background flow profiles is not empty.

V. EXPLICIT BOUNDS NEGLECTING
INCOMPRESSIBILITY

Rigorous analytical bounds on the heat transport may eas-
ily be obtained from the variational formulation by restrict-

ing the trial background fields further. Although the bounds
obtained in this section will not be optimal, the process of
deriving them will be useful for guiding the analysis of op-
timal solutions in Sec. VI. Moreover, the existence of a
stable background profile~optimal or not! guarantees that the
convex set of stable profiles is nonempty and thus that a
unique optimal background field exists.

Choose the background flow field to be zero [U(z)
50⇔f(z)50], so the upper bound is

Nu<11
1

2 E
0

1

c~z!2dz, ~5.1!

for functionsc(z) satisfying

E
0

1

c~z!dz50, ~5.2!

and the spectral constraint

0<Hc$v,u%5E H 1

2 Ra
u“vu21@c~z!22#v3u

1 1
2 u¹uu2J dx, ~5.3!

defined for divergence-free vector fieldsv~x! and tempera-
ture fieldsu satisfying the fluctuations’ boundary conditions.
Note that the Prandtl number drops out of the picture in this
restricted formulation.

The conduction profile corresponding toc50 is an ac-
ceptable trial function only for small enough Ra where the
indefinite cross term~;v3u! in Hc is dominated by the posi-
tive definite first and last terms~;uvu2 and u“uu2!. For high
Ra the temperature profile must be adjusted to enforce the
spectral constraint. Ifc(z)52, then~5.3! holds, but~5.2! is
violated. The task is to satisfy~5.2! and~5.3! simultaneously,
which is accomplished by choosingc so thatc'2 on most
of the interval@0,1# with departures near the boundaries at
z50 and 1, wherev3 andu are forced to zero by their bound-
ary conditions.

What works is a background temperature profilet(z) of
the form

t~z!55
12S 1d21D z, 0<z<d

z, d<z<12d

S 1d21D ~12z!, 12d<z<1,

~5.4!

as illustrated in Fig. 6. The parameterd ~0,d<1
2! will be

referred to as the ‘‘boundary layer thickness’’ and the asso-
ciatedc function is

c~z!5t8~z!1155
22

1

d
, 0<z<d

2, d<z<12d

22
1

d
, 12d<z<1.

~5.5!
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As we will now establish, the boundary layer thickness in
this profile may be adjusted so that the spectral constraint is
satisfied.

Rather than solving the eigenvalue problem correspond-
ing to ~5.3! in order to verify the spectral constraint, we may
perform the analysis directly in terms of the quadratic form
Hc$v,u%. The cross term inHc is estimated in terms of the
first and last terms as

U E @c~z!22#v3u dxU5 1

d U E
0

Lx
dxE

0

Ly
dyE

0

d
dz v3u

1E
0

Lx
dxE

0

Ly
dyE

12d

1

dz v3uU
<
1

d S U E
0

Lx
dxE

0

Ly
dyE

0

d
dz v3uU

1U E
0

Lx
dxE

0

Ly
dyE

12d

1

dz v3uU D .
~5.6!

Consider the first term in the set of large parentheses in~5.6!.
Becausev3 andu both vanish atz50, the fundamental theo-
rem of calculus ensures that

U E
0

Lx
dxE

0

Ly
dyE

0

d
dz v3uU

5U E
0

Lx
dxE

0

Ly
dyE

0

d
dzS E

0

z

dz8
]v3~x,y,z8!

]z8 D
3S E

0

z

dz9
]u~x,y,z9!

]z9 D U. ~5.7!

Elementary application of the Schwarz inequality implies

U E
0

z

dz8
]v3~x,y,z8!

]z8 U<AzF E
0

z

dz8S ]v3
]z8 D 2G1/2, ~5.8!

U E
0

z

dz9
]u~x,y,z9!

]z9 U<AzF E
0

z

dz9S ]u

]z9D 2G1/2. ~5.9!

Combining~5.8! and ~5.9! with ~5.7! we observe that

U E
0

Lx
dxE

0

Ly
dyE

0

d
dz v3uU

<U E
0

Lx
dxE

0

Ly
dyE

0

d
dz z

3F E
0

d
dz8S ]v3

]z8 D 2G1/2F E0ddz9S ]u

]z9D 2G1/2U, ~5.10!

where we have also extended the upper limit in thez8 andz9
integrations all the way tod. Thez integral in~5.10! may be
performed, and applying the Schwarz inequality to thex and
y integrals as well, we find

U E
0

Lx
dxE

0

Ly
dyE

0

d
dz v3uU

<
d2

2 F E
0

Lx
dxE

0

Ly
dyE

0

d
dz8S ]v3

]z8 D 2G1/2
3F E

0

Lx
dxE

0

Ly
dyE

0

d
dz9S ]u

]z9D 2G1/2. ~5.11!

A similar expression holds for the other end of the interval
nearz51. Putting together~5.11! and the corresponding re-
sult near z51 with the aid of the inequality
2ab<ca21b2/c, where the positive parameterc is free for
the moment, we deduce

U E @c~z!22#v3u dxU
<
1

d
3

d2

2
3
1

2 S cI ]v3
]z I

2

2

1c21I ]u

]zI
2

2D . ~5.12!

The incompressibility condition can now be used to
sharpen the estimate. Note first that by multiplying 05“•v
by ]v3/]z we have

05S ]v3
]z D 21 ]v3

]z

]v1
]x

1
]v3
]z

]v2
]y

. ~5.13!

Integrating~5.13! over the volume and integrating by parts
on the right-hand side to exchange the derivatives, we find

05 I ]v3
]z I

2

2

1E H ]v1
]z

]v3
]x

1
]v2
]z

]v3
]y J dx. ~5.14!

Likewise, squaring]v3/]z52(]v1/]x1]v2/]y), integrat-
ing, integrating by parts on the cross term, and rearranging
yields

05 I ]v3
]z I

2

2

2 I ]v1
]x I

2

2

2 I ]v2
]y I

2

2

22E ]v1
]y

]v2
]x

dx.

~5.15!

Now, adding twice~5.14! and once~5.15! to i“vi2
2, we de-

duce

FIG. 6. Trial background temperature profilet(z), as given in
~5.4!. The parameterd is referred to as the boundary layer thick-
ness. The dashed line is the temperature profile in the pure conduc-
tion state.
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i“vi2
25 I ]v1

]y
2

]v2
]x I

2

2

1 I ]v1
]z

1
]v3
]x I

2

2

1 I ]v2
]z

1
]v3
]y I

2

2

14I ]v3
]z I

2

2

>4I ]v3
]z I

2

2

. ~5.16!

Thus ~5.12! may be rewritten

U E @c~z!22#v3u dxU< d

4 S c4 i“vi2
21

1

c
i“ui2

2D .
~5.17!

The functionalHc$v,u% may now be bounded below:

Hc$v,u%>S 1

2 Ra
2

dc

16D i“vi2
21S 122

d

4cD i“ui2
2.

~5.18!

First choosec5d/2 so that

Hc$v,u%>S 1

2 Ra
2

d2

32D i“vi2
2. ~5.19!

To ensure the spectral constraint, then, we choose the bound-
ary layer thicknessd according to

d5
4

ARa
. ~5.20!

We may now evaluate the upper bound on the convective
heat transport:

Nu<11
1

2 E
0

1

c~z!2dz511
1

d
225

1

4
ARa21,

~5.21!

valid for Ra>64 so thatd<1
2.

We may improve this estimate slightly, reducing the pref-
actor, although leaving the exponent alone, by utilizing the
variational technology for the optimal profile. That is, we can
solve a simpler related problem that is not completely opti-
mal, but still produces a rigorous result. The calculation pro-
ceeds in two steps: first, the variational problem is reformu-
lated with the spectral constraint replaced by a new
constraint, stronger than the original but simpler in form,
and, second, the optimal profile subject to the new constraint
is found exactly. This exercise illustrates the implementation
of much of the variational machinery and will be useful for
giving insight into the nature of the ultimate optimal solution
discussed in Sec. VI.

For functionsv3(z),u(z) vanishing atz50 and 1 define
the functional

Kc$v3 ,u%5E
0

1H 4

2 RaU]v3]z U
2

1@c~z!22#v3u

1
1

2 U]u

]zU
2J dz. ~5.22!

Then using~5.16!, the functional defining the spectral con-
straint is seen to satisfy

Hc$v,u%5E H 1

2 Ra
u“vu21@c~z!22#v3u1 1

2 u“uu2J dx
>E F E

0

1H 4

2 RaU]v3]z U
2

1@c~z!22#v3u

1
1

2 U]u

]zU
2J dzGdx dy

5E Kc$v3~x,y,• !,u~x,y,• !%dx dy. ~5.23!

Hence if Kc ~defined for functions onzP@0,1#! is non-
negative definite, then so isHc ~defined onu and divergence
free v satisfying the boundary conditions under consider-
ation!. This implies that the result of the minimization prob-
lem overc(z) constrained byKc>0 is an upper bound on
the result of the minimization problem overc(z) constrained
by Hc>0. We have thus derived an alternative, albeit
weaker, variational bound on the heat transport:

Nu<11
1

2 E
0

1

c~z!2dz, ~5.24!

for functionsc(z) satisfying

E
0

1

c~z!dz50, ~5.25!

and the spectral constraint

0<E
0

1H 12 ~Dw!21SRa4 D 1/2@c~z!22#wu1
1

2
~Du!2J dz,

~5.26!

whereD5d/dz and the test functionsw(z) andu(z) vanish
at z50 and 1.@The integration variablev3 in the functional
Kc in ~5.22! has been replaced byw5(A4/Ra)v3 in ~5.26!.#
This variational bound is necessarily higher than the original
formulation because the new spectral constraint is stronger,
but the minimization can be carried out exactly, which, as
will be shown below, leads to an improved prefactor as com-
pared to the nonoptimal result in~5.21!.

The spectral condition for this minimization refers to the
sign of the lowest eigenvalue of the self-adjoint problem

lw52D2w1SRa4 D 1/2@c~z!22#u, ~5.27!

lu52D2u1SRa4 D 1/2@c~z!22#w. ~5.28!

This eigenvalue problem may be ‘‘diagonalized’’ by going
to new dependent variables

f ~z!5
1

A2
@w~z!1u~z!#, ~5.29!
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g~z!5
1

A2
@w~z!2u~z!#, ~5.30!

whereupon~5.27! and ~5.28! transform to

l f52D2f1SRa4 D 1/2@c~z!22# f , ~5.31!

lg52D2g2SRa4 D 1/2@c~z!22#g ~5.32!

for real functions f (z) and g(z), zP@0,1#, with Dirichlet
boundary conditions. Some care must be taken at this point:
the ground state eigenvalue of~5.27! and~5.28! is the lesser
of the ground state eigenvalues for the independent problems
~5.31! and~5.32!. Equivalently, non-negativity ofKc$v3,u% is
the same as non-negativity ofboth

Kc
1$ f %5E

0

1H 12 ~Df !21
1

2 SRa4 D 1/2@c~z!22# f 2J dz
~5.33!

and

Kc
2$g%5E

0

1H 12 ~Dg!22
1

2 SRa4 D 1/2@c~z!22#g2J dz.
~5.34!

Therefore the set of appropriate mean zeroc over which we
need to minimize is the intersection$cuK c

1>0 and
K c

2>0%5$cuK c
1>0%ù$cuK c

2>0%. Note that among mean-
zero functionsc(z), $cuK c

2>0% contains c[0 for every
value of Ra. This suggests what we will now do: vary over
the set$cuK c

150% and afterward verify that the ensuing ex-
tremal function is in$cuK c

2>0%. This guarantees that the so-
lution we produce is indeed the true minimum over the in-
tersection and is roughly analogous to the max-min
procedure described in Sec. IV for the full optimal problem.

So consider the eigenvalue problem

l f52D2f1SRa4 D 1/2@c~z!22# f ~5.35!

for real functions f (z), zP@0,1#, with Dirichlet boundary
conditions. With the normalization

15E
0

1

f ~z!2dz, ~5.36!

the variation of the ground state eigenvalue is

dl~0!

dc~z!
5SRa4 D 1/2f ~z!2 ~5.37!

and so the Euler-Lagrange equations for the optimalc is

05
d

dc~z! F12 E
0

1

c~z!2dz1aE
0

1

c~z!dz1bl~0!G
5c~z!1a1bSRa4 D 1/2f ~z!2, ~5.38!

wherea andb are Lagrange multipliers to be determined by
the mean-zero condition~5.25! and by the condition that the
ground state eigenvalue of~5.35! vanishes. Imposing~5.25!,
using the normalization~5.36!, and integrating~5.38!, we see
thata andb are related by

05a1bSRa4 D 1/2. ~5.39!

Hence the Euler-Lagrange equation forc(z) is

c~z!5a f ~z!22a. ~5.40!

Inserting~5.40! into ~5.35! and enforcing thel~0!50 con-
straint, we arrive at the nonlinear Schro¨dinger ~also known
as Duffing! equation forf :

052D2f1SRa4 D 1/2@a f ~z!22a22# f . ~5.41!

In the order we have formulated it here, the nonlinear bound-
ary value problem in~5.41! is to be solved and thena is to
be adjusted so that the normalization condition in~5.36! is
enforced.

Equation~5.41! is relevant only for Ra>p4'97.4; below
that a50, c[0, the purely conductive background profile
satisfies the spectral constraint, and Nu51. Above Ra5p4

the exact solution of~5.41! is given in terms of Jacobi ellip-
tic functions and this calculation has been fully carried out in
the context of shear flow in Ref.@12#. The solutionf (z) is
single signed and symmetric about the middle of the interval
@0,1#, as illustrated in Fig. 7. The large Rayleigh number
asymptotic solution to~5.41!, valid for Ra→`, is easier to
manipulate analytically and that is how we will solve the
problem here.

From the exact solution we observe thata→` as Ra→`,
so in the limit theD2f term is negligible away from the
boundariesz50 and 1. Hence, in the middle of the interval
f (z) is approximately

f ~z!'S a12

a D 1/2. ~5.42!

Near the boundary atz50, we change the independent vari-
able to

x5Cz, ~5.43!

where

FIG. 7. Functionf (z), the solution of~5.41!, for Ra52000.
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C5Fa12

2 SRa4 D 1/2G1/2, ~5.44!

and the equation becomes

d2f

dx2
52

a

a12
f ~x!322 f ~x!, ~5.45!

with boundary conditions

f ~0!50, f ~x!→S a12

a D 1/2 as x→`. ~5.46!

The exact solution of~5.45! and ~5.46! is

f ~x!5S a12

a D 1/2tanhx, ~5.47!

which is seen to match up perfectly with the approximate
solution away from the boundaries. This is the asymptotic
form of the solution on the first half of the interval, and
composite solutions, uniformly valid over the entire interval
within exponentially small error of ordere2C, can be con-
structed either additively,

f ~z!'S a12

a D 1/2@ tanhCz1tanhC~12z!21#, ~5.48!

or multiplicatively,

f ~z!'S a12

a D 1/2tanhCz tanhC~12z!. ~5.49!

The value ofa may now be determined by the normaliza-
tion condition in~5.36!, which is written on the half interval
as

152E
0

1/2

f ~z!2dz5
2

C E
0

C/2

f ~x!2dx

'
2

C

a12

a FC22tanh
C

2 G . ~5.50!

Neglecting exponentially small terms of ordere2C, this be-
comes

1'
a12

a F12
2

CG , ~5.51!

yielding

a12'SRa16D
1/2

. ~5.52!

On the first half of the interval@0,1# the asymptotic form
of the optimal functionc(z) is

c~z!5a f ~z!22a'~a12!tanh2 Cz2a. ~5.53!

Note then that

c~z!22'~a12!@ tanh2 Cz21#,0, ~5.54!

so the functionalK c
2 is manifestly positive. Hence thec(z)

that we have constructed here is indeed the true optimal so-
lution. @That this procedure—constraining the variation only
by the conditionK c

1>0—yields the true optimal solution
does not depend on the use of asymptotic methods; directly
from ~5.41! it is an easy exercise in one-degree-of-freedom
Hamiltonian mechanics to show that the exactc(z),2 point-
wise.#

We are now in a position to evaluate the upper bound in
~5.24!. Recalling~5.40!, we find

Nu<11
1

2 E
0

1

c~z!2dz

511
a2

2 E
0

1

@ f ~z!421#dz

511
a2

C E
0

C/2

f ~x!4dx2
a2

2

'11
~a12!2

C E
0

C/2

tanh4x dx2
a2

2
. ~5.55!

Within exponentially small terms

E
0

C/2

tanh4x dx'
C

2
2
4

3
, ~5.56!

the upper bound reduces to

Nu<11
1

2 E
0

1

c~z!2dz' 1
6 Ra

1/221, ~5.57!

a 33% reduction in the prefactor over the cruder estimate in
~5.21!. It is interesting to see that the structure of the optimal
background temperature profile for this alternative formula-
tion was qualitatively captured by the trial profile in~5.4!,
illustrated in Fig. 6. In Fig. 8 we plot the optimal profile for
the alternative minimization problem; note the presence of
the stable temperature stratification in the middle.

FIG. 8. Optimal background temperature profile of the modified
variational problem,t(z) resulting from~5.54!, for Ra52000. This
profile is appropriately compared with the trial profile in Fig. 6,
where the boundary layer in the profile was sketched with the thick-
nessd chosen according to~5.20! with Ra52000.
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VI. OPTIMAL BOUNDS UTILIZING
THE EULER-LAGRANGE EQUATIONS

The analysis in the preceding section was carried through
without fully utilizing the incompressibility constraint on the
velocity vector field. Incompressibility tends to lessen the
normal component of the velocity near a no-slip surface be-
cause the vanishing tangential components force the normal
derivative of the vertical component to vanish also. Hence it
is expected that this feature may allow for a wider boundary
layer while maintaining the spectral constraint, and hence a
lower estimate on Nu. What we will show in this section is
that the full optimal solution can take advantage of this effect
and produce a lower scaling of the upper bound. Although
we will not explicitly solve the optimal problem, we will
deduce properties of the optimal profile from the Euler-
Lagrange equations derived in Sec. IV. Here we study the
case where the optimal profile lies on a codimension-1 por-
tion of the marginally stable isospectral surface, so that the
ground state is nondegenerate and the single wave number
solution applies.

First we show that when there is no background flow
field, the three-dimensional~3D! problem can be reduced to
a 2D problem. Suppose we have the solution to the Fourier
transformed eigenvalue problem~4.28!–~4.32! for l~0!50:

05~2D21k2!u1 ik1p, ~6.1!

05~2D21k2!v1 ik2p, ~6.2!

05~2D21k2!w1Dp1ARa@c~z!22#u, ~6.3!

05 ik1u1 ik2v1Dw, ~6.4!

05~2D21k2!u1ARa@c~z!22#w, ~6.5!

whereD5d/dz andc is related tow andu by ~4.35!. The
appearance of Ra has been ‘‘symmetrized’’ as in Sec. V. As
outlined in Sec. IV, the wave vectork5(k1 ,k2) is presumed
to have been chosen among the possibilities to maximize
*c2. Then the change of dependent variables fromu and
v to u cosw1v sinw and 2u sinw1v cosw, where
tanw5k2/k1 , yields

05~2D21k2!u1 ikp, ~6.6!

05~2D21k2!v, ~6.7!

05~2D21k2!w1Dp1ARa@c~z!22#u, ~6.8!

05 iku1Dw, ~6.9!

05~2D21k2!u1ARa@c~z!22#w, ~6.10!

wherek5uku5Ak121k2
2, which does not vanish; there is no

normalizable solution fork50. Equation~6.7! is uncoupled
and because the newu andv satisfy homogeneous Dirichlet
boundary conditions atz50 and 1, the solution forv is pre-
cisely v(z)50. The remaining problem is just that derived
from 2D convection in thex-z plane, with the length in thex
direction an integer multiple of 2p/k. It is possible that there
are more than one vectorsk for the optimal solution, in
which case the resulting degeneracy of the ground state may

be considered ‘‘trivial’’ in the sense that each yields parallel
c and hence the same normal vector to the isospectral sur-
face.

Eliminatingu andp in ~6.6!–~6.10!, then, we obtain

05k22~2D21k2!2w1ARa@c~z!22#u, ~6.11!

05~2D21k2!u1ARa@c~z!22#w. ~6.12!

Whenw andu are the unique solution to~6.11! and~6.12!, as
we will consider for convenience, then without loss of gen-
erality they may both be taken to be real~if they were com-
plex beyond a common phase factor, then the real and imagi-
nary parts would each be independent solutions!. The
functionalHc for this solution vanishes:

05E
0

1H 1

k2
~D2w!212~Dw!21k2w21~Du!21k2u2

1A4 Ra@c~z!22#wuJ dz. ~6.13!

The optimal temperature gradient profilec(z) is related to
w(z) andu(z) as in ~4.35!,

c~z!5aSw~z!u~z!2E
0

1

w~z8!u~z8!dz8D , ~6.14!

where the Lagrange multipliera has been properly adjusted
so that the solution exists and is normalized according to

15E
0

1H 1

k2
~Dw!21w21u2J dz. ~6.15!

Based on the experience gained from the analysis in Sec. V,
we expect the solutionc(z) to be everywhere less than 2
with negative values in the boundary layers. Likewise, we
expect the productw(z)u(z) to be everywhere positive,
analogous to thef (z)2 from Sec. V; see Fig. 7. The Lagrange
multiplier a.0 @because of the parallel—not antiparallel—
alignment of the vectors in Fig. 2~b!# and we expect it to
scale as a positive power of Ra.

The upper bound on the heat transport may be expressed
in terms of the eigenfunctions, using~6.13! and ~6.14!, as
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Nu21<
1

2 E
0

1

c~z!2dz

5aS E
0

1Hwu2
1

A16 RaF 1k2 ~D2w!212~Dw!2

1k2w21~Du!21k2u2G J dzD . ~6.16!

Becausea is positive, this implies that the optimal solution
satisfies

E
0

1

wu dz.
1

A16 Ra
E
0

1H 1

k2
~D2w!212~Dw!21k2w2

1~Du!21k2u2J dz. ~6.17!

Likewise,a may be expressed as a ratio of integrals of the
solution

a52

E
0

1Hwu2
1

A16 RaF 1k2 ~D2w!212~Dw!21k2w21~Du!21k2u2G J dz
E
0

1Sw~z!u~z!2E
0

1

w~z8!u~z8!dz8D 2dz ~6.18!

and the bound on Nu is explicitly

Nu21<
1

2 E
0

1

c~z!2dz52

S E
0

1Hwu2
1

A16 RaF 1k2 ~D2w!212~Dw!21k2w21~Du!21k2u2G J dzD 2
E
0

1Sw~z!u~z!2E
0

1

w~z8!u~z8!dz8D 2dz . ~6.19!

At this point that we may establish a relationship between the optimal background field method and Howard’s upper bound
theory. Utilizing ~6.17!, we can throw away part of the numerator in~6.19! to derive an upper bound on the upper bound:

Nu21<
1

2 E
0

1

c~z!2dz,2

S E
0

1

wu dzD S E
0

1Hwu2
1

A16 RaF 1k2 ~D2w!212~Dw!21k2w21~Du!21k2u2G J dzD
E
0

1Sw~z!u~z!2E
0

1

w~z8!u~z8!dz8D 2dz .

~6.20!

The right-hand side above is precisely the expression for the
heat transport at Rayleigh number 4 Ra utilizing the statisti-
cal stationarity closure and single mode hypothesis~which is
apparently true for not-too-large Ra! made by Howard in@5#.
Those hypotheses and that derivation, as well as the factor 4
rescaling of the Rayleigh number, is discussed in the Appen-
dix, where a brief review of Howard’s approach is presented.
Howard’s upper bound is sought as the largest possible value
of the homogeneous functional ofw(z) and u~z! in ~6.20!,
maximized over functions satisfying the boundary conditions
and *wu dz.0. If we call the bound in~6.19! B~Ra! and
Howard’s bound—the supremum of~6.20! at a quarter of the
Rayleigh number—BH~Ra!, then

Nu21<B~Ra!,BH~4 Ra!, ~6.21!

where the second inequality is strict~for nonstationary flows
the first inequality is strict too!. When the estimates scale
with Ra, the bound derived by the optimal background field
method is less than that of Howard’s method modulo a pref-

actor.@Some of the prefactor discrepancy may be absorbed in
the estimate going from~6.19! to ~6.20!.# The correspon-
dence in~6.21! can in fact be made at an earlier stage in the
analysis, prior to Fourier transforming, to elucidate the gen-
eral connection between the estimates and this too is re-
served for the Appendix. We may exploit this correspon-
dence to utilize techniques from Howard’s review@16~a!# to
directly estimate the magnitude of the right-hand side in
~6.19!; in ~6.19! w and u are the solution of~6.11!, ~6.12!,
and ~6.14!, but an upper estimate may be established by
bounding the largest value of the ratio of integrals over an
enlarged function space.

First note that because the ratio is homogeneous inw and
u and*wu dz.0, the normalization may be adjusted so that

15E
0

1

w~z!u~z!dz. ~6.22!

Then we seek the largest possible value of the ratio
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S E
0

1H 12
1

A16 RaF 1k2 ~D2w!212~Dw!21k2w21~Du!21k2u2G J dzD 2
E
0

1

@w~z!u~z!21#2dz

~6.23!

over functionsw(z) andu(z) satisfying the normalization in
~6.22!, boundary conditions

w~0!5Dw~0!5u~0!505w~1!5Dw~1!5u~1!,
~6.24!

and, from~6.17!, the constraint

E
0

1H 1

k2
~D2w!212~Dw!21k2w21~Du!21k2u2J dz

,A16 Ra. ~6.25!

We now use two of the technical results from Ref.@16~a!#,
which we will refer to as Howard’s Lemma I and Howard’s
Lemma II. The proofs of these lemmas are sketched in the
Appendix.

Howard’s Lemma I.For functionsw(z) andu(z) satisfy-
ing ~6.22! and ~6.24!, there is a positive absolute constant
CI.1.30 such that

E
0

1

@w~z!u~z!21#2dz

>CIF E
0

1

~D2w!2dzG21/4F E
0

1

~Du!2dzG21/4

.

~6.26!

Howard’s Lemma II.For functionsw(z) and u(z) satis-
fying ~6.22! and ~6.24!, there is a positive absolute constant
CII.2.20 such that

E
0

1H 1

k2
~D2w!212~Dw!21k2w21~Du!21k2u2J dz

>CIIF E
0

1

~D2w!2dzG1/3F E
0

1

~Du!2dzG1/3, ~6.27!

uniformly in the wave numberk.
These lemmas are utilized as follows. Howard’s Lemma

II asserts that in the regime where~6.25! holds, the numera-
tor of ~6.23! is

S E
0

1H 12
1

A16 RaF 1k2 ~D2w!212~Dw!21k2w21~Du!2

1k2u2G J dzD 2
<H 0,12 CII

A16 RaF E01~D2w!2dzG 1/3
3F E

0

1

~Du!2dzG 1/3J 2

. ~6.28!

Defining

X5F E
0

1

~D2w!2dzG1/4F E
0

1

~Du!2dzG1/4 ~6.29!

and using Howard’s Lemma I,~6.28! inserted into~6.19!
yields

Nu21<
1

2 E
0

1

c~z!2dz,
2

CI
XH 0,12 CII

A16 Ra
X4/3J 2

.

~6.30!

Not knowing the value ofX, we maximize over it to con-
clude that

Nu21<
2

CI

4

7 S 37 A16 Ra
CII

D 3/4<0.257 Ra3/8. ~6.31!

This bound is valid so long as the optimal background tem-
perature profile has a nondegenerate ground state. We do not
prove when this is the case; from the numerical analysis in
Ref. @15# we observe that this is the case for Ra,23 300. The
optimal background profile has a degenerate ground state
above Ra'23 300 and the single wave number solutions are
no longer relevant to the problem.

VII. DISCUSSION

The analysis presented in this paper establishes a funda-
mental and mathematically rigorous connection between the
conditions forstability and the seemingly unrelated dynam-
ics of unstable; unsteady convective motions includingtur-
bulence. This connection relies in an essential way on the
relationship between the viscous Boussinesq dynamics and a
related inviscid system~in the previous papers of this series
the connection between Navier-Stokes dynamics and the in-
viscid Euler equations was exploited!. The association of in-
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viscid dynamics and turbulence is certainly not new, going
back at least to the scaling ideas of Kolmogorov, nor is the
use of marginal stability criteria to help explain characteris-
tics of turbulent systems. But to the best of our knowledge
the quantitative approach to turbulent dynamics in the
Navier-Stokes and Boussinesq equations introduced and de-
veloped in this series of papers is the first to give a rigorous
mathematical basis to this conception. While there remains
much to understand regarding the interplay of viscous and
inviscid properties of fluids and their motions, the techniques
developed here offer an alternative view of this long-
standing problem.

The next question is to determine the utility of this ap-
proach. The simplifications made in Sec. V allowed us to
derive a rigorous analytic upper estimate of the form
Nu;Ra1/2, and using the optimal background field methods
we derived an improved estimate of the form Nu;Ra3/8

when the optimal background profile has a nondegenerate
ground state~i.e., just one marginally stable mode!, which is
the case only for a bounded range in Ra~Ra<23 300! @15#.
~These are also the scalings found by Howard@5#.! For
higher Ra the optimal background profile has a degenerate
ground state and it is likely that the degeneracy continues to
increase so that more and more modes are marginally stable
as the Rayleigh number is increased.

How good is the result of this analysis in comparison to
theories of turbulence, to direct numerical simulations, and
ultimately to experiments? And how practical will it be to
fully exploit the methods proposed here? Can real improve-
ments in the rigorous predictions be expected from further
development of this mathematical procedure?

Experimental studies of thermal convection show differ-
ent heat transport scaling behavior in different parameter re-
gimes@17#. Not too far above the critical Rayleigh number
where convection sets in, Nu;Ra1/3 scaling is observed, and
at higher Rayleigh numbers there is a crossover to Nu;Ra2/7

scaling, a region of the dynamics known as ‘‘hard turbu-
lence’’ @18#. Some recent experiments indicate the emer-
gence of another boundary layer~shrinking;Ra21/2! signal-
ing an impending crossover to another region of Nu;Ra1/2

scaling@19#, which is the scaling we have proven here is an
absolute upper bound.

The ‘‘classical’’ theory of convection explains the
Nu;Ra1/3 behavior by invoking a marginal stability condi-
tion on the conduction boundary layer@20#. The argument
may be simply stated as follows: if a marginally stable ther-
mal boundary layer of thicknessd ~in dimensional units!
forms, in which there is essentially no flow, then it must be
that the Rayleigh number based ond and half the tempera-
ture drop~the other half occurring across the other layer! is
the critical Rayleigh number Rac . Then

Rac5
ga~dT/2!d3

nk
5S d

hD
3 Ra

2
. ~7.1!

The Nusselt number scales asd21, so this argument leads to
the Nu;Ra1/3 prediction. Compelling as this idea may be, it
is far from a rigorous argument, e.g., Rac is ill defined due to
the ambiguity of the boundary conditions to which it refers.
The rigorous background field method presented here con-
tains some strikingly similar features: if the entire profile

~not just the boundary layer! is stable~in the sense of non-
linear energy stability! then the we may deduce an upper
bound from it. The 3/8 scaling derived in Sec. VI is entic-
ingly close to the classical 1/3 exponent, although its region
of validity is relatively restricted.

A number of theories for the hard turbulent Nu;Ra2/7

scaling have been developed in recent years@21#, most of
which directly exploit the observed large scale circulation,
which both provides a stabilizing shear for the boundary lay-
ers and globally organizes the motion of smaller scale ther-
mal plumes responsible for much of the heat transport. The
implementation of a background flow profile together with
the temperature profile is an obvious way to investigate this
phenomenon in the context of the analysis presented in this
paper, as well as to bring the Prandtl number into play re-
garding the bounds. These issues remain a challenge for the
future.

The asymptotic Nu;Ra1/2 scaling follows from Kraich-
nan’s statistical turbulence theory closure model@22# @which
additionally predicts logarithmic corrections to
Nu;Ra1/2~ln Ra!23/2# as well as from Howard’s upper bound
theory @23#. So it appears that the rigorous bound resulting
from the simplified calculation in Sec. V, Nu;Ra1/2, is in
accord with the asymptotic scaling expected on the basis of
statistical turbulence theory, at least to within logarithms,
and with the asymptotic scaling anticipated by experiments.

These results are all encouraging, and it is natural to in-
vestigate where there might be room for improvement in the
estimates. The analyses in Secs. V and VI was simplified by
excluding a background flow field. Because large scale shear
is known to be an important component of the heat transfer
in the hard turbulent regime, it will be interesting to see if the
inclusion of a background flow improves the exponent in the
bound. Because the elementary methods used in Sec. V will
likely not reveal enhanced stability resulting from an im-
posed shear, the spectral constraint will almost surely have to
be imposed exactly in order to see improvement. As previ-
ously noted, another interesting aspect of the problem that
has been discarded in the no-background-flow case is the
Prandtl number dependence of the heat transport. The
Prandtl number enters this variational approach nontrivially
only in the background shear contribution in the spectral
constraint.

Ideally the variational problem for the optimal back-
ground profile laid out in Sec. IV will be solved exactly to
yield the best estimates that this method has to offer. Al-
though it is unlikely that exact analytical solutions will re-
sult, direct numerical solution of the nonlinear boundary
value problem is possible@15# and those results will be dis-
cussed elsewhere. As far as analytical work is concerned, it
is likely that matched asymptotic methods, such as those
used to findf in Sec. V, may be fruitfully brought to bear.
Given the similarity of the nonlinear Euler-Lagrange equa-
tion with those of Howard’s theory, it is expected that some
of his and Busse’s asymptotic methods may be applied.

The two-dimensional version of the convection problem
will be worthwhile to study in detail: direct numerical simu-
lations in two dimensions display both the Nu;Ra1/3 and
Ra2/7 scalings@24,25#, and special mathematical properties of
2D flows may be useful for the analysis@26#. Hence inter-
esting behavior, with some of the characteristics of full 3D
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turbulence, may reasonably be expected from this simplified
problem. The Euler-Lagrange equations for the optimal
background fields with a unique ground state in two dimen-
sions are obtained from the results of Sec. IV by settingv50
andk250. Then the horizontal velocity componentu and the
pressureq may be eliminated, yielding a pair of coupled
equations forw(z) andz(z). The problem becomes

05s~2D21k2!2w1 ikD@f~z!w#1 ikf~z!Dw

1s Rak2@c~z!22#z, ~7.2!

05~2D21k2!z1@c~z!22#w, ~7.3!

with boundary conditionsw, Dw, andz50 for z50 and 1.
These equations are closed with the expressions forf andc,

f~z!5g$ i @Dw~z!*w~z!2Dw~z!w~z!* #21%, ~7.4!

c~z!5g$z~z!*w~z!1z~z!w~z!*21%. ~7.5!

In this formulation the Lagrange multiplierg is adjusted so
that the solutions satisfy

E
0

1

f~z!dz50, ~7.6!

E
0

1

c~z!dz50 ~7.7!

and the bound on the Nusselt number is

Nu<11
1

2 S 1

Ra E0
1

f~z!2dz1E
0

1

c~z!2dzD , ~7.8!

where the wave numberk is varied~over a discrete param-
eter set62pn/Lx or over a continuous range for the most
general situation! to maximize the right-hand side of~7.8!.
Further study of this particular problem~deriving solutions
and/or estimates, determining the stability of the resulting
background profiles, etc.! remains for the future.

It should be noted that the 3D problem with a background
flow is not directly reducible to a 2D problem as is the case
whenf is taken to be zero from the beginning. Nor, for that
matter, do 3D shear flow problems, such as those studied in
the first two papers in this series, Refs.@8, 12#, reduce iden-
tically to 2D problems. It is interesting to note that for plane
parallel background flow fields the 3D shear of problem of
Ref. @8# maps onto the 2D convection problemif it is as-
sumed that the most energy-unstable mode in a plane parallel
shear flow is homogeneous in the streamwise direction. This
is not known to be the case; this question also arises in the

context of Howard’s theory applied to shear flow problems
and is discussed in that context in Busse’s review, Ref.
@16~b!#.

Once the optimal profile has been obtained, whether for
the 2D or the 3D problem, the self-adjoint eigenvalue prob-
lem associated with the spectral constraint leads to consider-
ation of the complete set of eigenfunctions. These eigenfunc-
tions will span the fluctuations about the background fields,
and when the background profiles are optimal they provide a
functional basis that is uniquely ‘‘adapted’’ to the turbulent
flows, generated in a unique way from the fundamental equa-
tions of motion. It will be interesting to look at the structure
of those flow fields with the hope that elements of the turbu-
lent dynamics may be illuminated in these coordinates.

Those modal dynamical systems also offer a systematic
approach to obtaining corrections to the best upper bounds
produced by the optimal background fields. Indeed, recalling
~3.15! we may assert the equality

2~Nu21!5
1

Ra E0
1

f~z!2dz1E
0

1

c~z!2dz

1 lim sup
t→`

K 2
2

A
Hf,c$v,u%L

t

. ~7.9!

Labeling the modes$vn ,un% of the spectral problem in the
order of their magnitude 05l~0!<l~1!<l~2!<••• , we see that
the general nonlinear solution for the fluctuation may be
written

S v~x,t !u~x,t ! D5 (
n50

`

an~ t !S vn~x!

un~x! D . ~7.10!

Then~7.9! may be reexpressed in terms of the time averaged
squared modal amplitudes

2~Nu21!5
1

Ra E0
1

f~z!2dz1E
0

1

c~z!2dz

2 lim inf
t→`

1

A (
n51

`

l~n!^uan~ !u2& t . ~7.11!

Including the contributions from the modal dynamics one by
one produces a monotonically decreasing~and thus conver-
gent! sequence of upper bounds. If the optimal background
fields have a degenerate ground state, then modes beyond
that number must be included before any decrease in the
upper bound occurs.

Of course the exact modal dynamics is not available be-
cause the complete set of coupled amplitude evolution equa-
tions has the same overall complexity as the original partial
differential equations. But we may truncate the amplitude
evolution equations to obtain approximate dynamics for the
modal amplitudes. These ‘‘Galerkin truncations’’ will lead to
finite-dimensional dynamical systems models, akin to the re-
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duced models derived from the proper orthogonal decompo-
sition @27#. In fact, the modes derived from the spectral prob-
lem associated with energy stability analysis have previously
been used for this purpose@28#, the ultimate goal of this kind
of theory being to develop control strategies for turbulent
flows @29#. Further applications notwithstanding, the Galer-
kin truncations can provide a systematic—albeit not rigor-
ously bounding—sequence of estimates when used in~7.11!.

It is natural to be suspicious of the ability of any low-
dimensional dynamical system to capture the essence of fully
developed turbulent motions. The conventional picture for
the universal energy distribution in homogeneous isotropic
turbulence is the Kolmogorov spectrumE(k);«2/3k25/3 up
to the cutoff wavenumber scalekmax;«1/4 ~the inverse of the
Kolmogorov length scalehK;«21/4! where exponential de-
cay of the amplitudes sets in, so the energy dissipation rate
;k2E(k) is dominated by contributions from modes at the
small scales aroundkmax. There are very many modes in the
wave number shells about this scale and hence it appears
unlikely that the energy dissipation can be quantitatively de-
scribed by just a few modes and certainly not by large scale
structures such as low-k Fourier modes or modes associated
with a linearized evolution operator~e.g., Stokes modes!.
But there are two key points where this account may be
questioned.

First, the picture coming from homogeneous isotropic
theory does not necessarily apply the description of the situ-
ation for inhomogeneous anisotropic turbulence, such as
wall-bounded flows, where definite small scale coherent
structures can be identified as the dominant energy-
containing modes, for example, via the proper orthogonal
decomposition. The energy—and the energy dissipation and
turbulent transport—is not democratically distributed over
all the many small scale modes, but rather there are definite
phase and amplitude relations that could conceivably result
in a significant reduction in the number of independent dy-
namical degrees of freedom.

Second, modes produced by the spectral constraint asso-
ciated with the optimal background flows will generallynot
be large scale Stokes-like modes, but rather small scale co-
herent structures. For the shear flow problem the lowest
mode coming out of the spectral constraint are streamwise
oriented wall bounded vortices whose diameters are on the
scale of the boundary layer thickness@30#, which at high
Reynolds number issmallerthan the bulk Kolmogorov scale
hK . The picture that emerges is one where the bulk dissipa-
tion is largely captured~and safely overestimated, appar-
ently! by the contributions to the dissipation rate bounds
from the background fields, while corrections due to the
boundary layer structures are contained in the modal ampli-
tude evolution taking place over the background fields.
Whether or not this picture will survive quantitative tests
remains to be seen.

Finally, we recall that the effective stability condition on
the background fields in the variational problems developed
in this series of papers is a stricter constraint than that which
we really want to impose. The spectral constraint requires
background profiles to be stable against all possible fluctua-
tion fields, while in fact the basic calculation in~3.15! shows
that all that is really required of background fields producing
exact results ~or upper bounds! is that they be marginally

stable~or stable! ‘‘on average’’ in the sense that long time
averages ofHU,t vanish ~or are positive!. This is a weaker
constraint than we have used in the analysis here, but it is
awkward to impose because to exploit this relaxation re-
quires some knowledge of the averaging process, i.e., some
control of the temporal statistics of the solutions of the full
nonlinear problem. As we have seen in the foregoing analy-
sis, estimates of the magnitude of the global transport depend
on the regularity of the allowed fluctuation fields in the
boundary layers. The likelihood that an appropriate sense of
‘‘averaged regularity’’ of the fluctuations exceeds the uni-
form regularity utilized here opens the door to studies ex-
ploiting statistical features of turbulent solutions in an alter-
native way. That too will be left for future investigations.

In conclusion, the methods and results presented in this
paper and in the previous papers in this series demonstrate
the potential for rigorous analysis of the Navier-Stokes and
related equations in problems of direct relevance to turbu-
lence. Many mathematical challenges remain, but we are
hopeful that continued development of these techniques will
result in improved analytical estimates and eventually to
more fundamental physical understanding of complex fluid
dynamics.
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APPENDIX: HOWARD’S THEORY
AND HOWARD’S LEMMAS

Howard’s upper bound theory, introduced in Ref.@5#, is
derived from the Boussinesq equations supplemented by a
hypothesis of statistical stationarity, i.e., the technical as-
sumption that horizontal averages, and thus also volume av-
erages, are time independent. This is true for stationary
flows, and for large aspect ratio systems it is a reasonable
assumption; it could actually be valid in the limit of an infi-
nite horizontal layer, but it has not been shown to follow
from the equations of motion and it is likely not true in
general in finite systems. In this section we will denote hori-
zontal averages bŷ& and volume averages by^^ &&, and we
will use the notationu5(u,v,w).

The theory proceeds from the Boussinesq equations

]u

]t
1u•“u1“p5sDu1s RakT, ~A1!
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“•u50, ~A2!

]T

]t
1u•“T5DT ~A3!

by deriving the relations analagous to~1.10!, ~1.13!, and
~1.15! between the Nusselt number

Nu511^^wT&&, ~A4!

and the dissipation rates. Invoking the statistical stationarity
hypothesis, standard calculations yield

Nu5^^u“Tu2&& ~A5!

and

Ra~Nu21!5^^u“uu2&&. ~A6!

The temperature is decomposed into a horizontal average
and a fluctuation

T~x,t !5^T&~z!1u~x,t !. ~A7!

The mean temperature profile^T&(z) satisfies the boundary
conditions on the top and bottom,^T&~0!51 and^T&~1!50,
and sou vanishes there. It is easy to see that Nu215^^wu&&
using incompressibility. The horizontal average of the tem-
perature evolution equation~A3! combined with the bound-
ary conditions gives

^wu&2^^wu&&5
d^T&
dz

11, ~A8!

which, when inserted into~A5! to eliminate the mean, yields

Nu215^^u“uu2&&1ŠŠ~^wu&2^^wu&&!2‹‹. ~A9!

In essence, Howard’s upper bound theory consists of maxi-
mizing Nu215^^wu&& subject to the constraints in~A6! and

~A9!. It is convenient to cast the variational problem in the
form of a nonlinear Dirichlet ratio, as follows.

Adding together the expressions for Nu21 from ~A6! and
~A9! gives

2~Nu21!52^^wu&&5
1

Ra
^^u“uu2&&1^^u“uu2&&

1ŠŠ~^wu&2^^wu&&!2‹‹, ~A10!

and rearranging slightly produces an expression for the iden-
tity:

15

2^^wu&&2F 1Ra ^^u“uu2&&1^^u“uu2&&G
ŠŠ~^wu&2^^wu&&!2‹‹

. ~A11!

Finally, multiplying by Nu215^^wu&& gives

Nu21

52

^^wu&&22^^wu&&F 1

2 Ra
^^u“uu2&&1

1

2
^^u“uu2&&G

ŠŠ~^wu&2^^wu&&!2‹‹
.

~A12!

Substituting u85u/ARa in place ofu and dropping the
prime, ~A12! becomes

Nu21

52

^^wu&&22^^wu&&
1

A4 Ra
†^^u“uu2&&1^^u“uu2&&‡

ŠŠ~^wu&2^^wu&&!2‹‹
.

~A13!

Howard’s upper bound, denotedBH~Ra!, is sought as the
largest possible value of the homogeneous ratio in~A13!,

Nu21<BH~Ra!5sup2

^^wu&&22^^wu&&
1

A4 Ra
†^^u“uu2&&1^^u“uu2&&‡

ŠŠ~^wu&2^^wu&&!2‹‹
, ~A14!

maximized over divergence-free vector fieldsu and func-
tions u satisfying Dirichlet boundary conditions atz50 and
1. This set contains all possible solutions of the original
Boussinesq equations, so given the statistical stationarity hy-
pothesis, the resulting upper bound applies to the time aver-
aged heat transport.

It is straightforward to check that the Euler-Lagrange
equations for Howard’s variational problem~A14! coincide

in form with those for the optimal background field, but with
different Lagrange multipliers in different places enforcing
different constraints. This strikes us as a somewhat amazing
correspondence: the bound from theoptimal background
profile satisfies a relation that is similar in form to the foun-
dation of Howard’s variational problem, i.e., a statistical
power balance. The correspondence for this problem is also
intriguing because of other fundamental differences in the
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approaches: the background field formalism allows for sym-
metry breaking flow fields—the implications of which have
not been fully explored in this paper—whereas the statistical
stationarity hypothesis seems to inextricably force the sym-
metry of the geometry into Howard’s variational problem.
Moreover, it is not clear what would take the place of the
horizontal averaging procedure in case the problem is posed
in geometries without obvious symmetries; these are also
nontrivial problems for the background field method because
of the need there to identify the appropriate space of stable
background flows and temperature fields.

The expression in~A13! is remarkably similar to the op-
timal upper boundB~Ra! derived from the background field
method; in the present notation~6.19! is

Nu21<
1

2 E
0

1

c~z!2dz5B~Ra!

52

S ^^wu&&2
1

A16 Ra
†^^u“uu2&&1^^u“uu2&&‡D 2

ŠŠ~^wu&2^^wu&&!2‹‹
,

~A148!

where the pair~u,u! is the solution to~6.11! and~6.12!. Be-
cause the Lagrange multipliera.0, the numerator above is
the square of a positive number and an expression such as
that in ~A.14! is recovered as a strict upper estimate and the
connection with Howard’s bound is established:

B~Ra!,2

^^wu&&22^^wu&&
1

A16 Ra
†^^u“uu2&&1^^u“uu2&&‡

ŠŠ~^wu&2^^wu&&!2‹‹
<BH~4 Ra!. ~A15!

For the estimate in Sec. VI, however, we did not attempt a
solution of the Euler-Lagrange equations. Rather, in the
spirit of Howard’s theory, we sought the largest possible
value of the ratio in~A148! over a set of functions that con-
tains the solution.

We now turn to the proofs of the two technical lemmas
from Howard’s analysis in Ref.@16#~a! that were used in Sec.
VI to bound the ratio. As will be seen, the analysis is very
similar in nature to that used to derive the estimates in Sec.
V.

Howard’s Lemma I.For functionsw(z) andu(z) satisfy-
ing boundary conditionsw(0)5Dw(0)5u(0)505w(1)
5Dw(1)5u(1) and*wu51, there is a positive constantCI
such that

E
0

1

@w~z!u~z!21#2dz>CIF E
0

1

~D2w!2dzG21/4

3F E
0

1

~Du!2dzG21/4

. ~A16!

Proof. First note that in light of the boundary conditions
at z50, using the fundamental theorem of calculus and the
Cauchy-Schwarz inequality,

uu~z!u5U E
0

z

Du~z8!dz8U<AzF E
0

1

~Du!2dzG1/2.
~A17!

Similarly,

uw~z!u5U E
0

z

dz8E
0

z8
dz9D2w~z9!U< 2

3z
3/2F E

0

1

~D2w!2dzG1/2.
~A18!

Define the ‘‘boundary layer thickness’’d according to

1

d2
5
2

3 F E
0

1

~Du!2dzG1/2F E
0

1

~D2w!2dzG1/2. ~A19!

Note thatd,1
2; indeed, the normalization*wu51 together

with the Poincare´ inequality implies

15E
0

1

w~z!u~z!dz<p3F E
0

1

~D2w!2dzG1/2F E
0

1

~Du!2dzG1/2
5
3p3

2d2
. ~A20!

Then the integrand on the left-hand side of~A16! is bounded
from below pointwise on@0,d# as

@12w~z!u~z!#2>S 12
z2

d2D
2

~A21!

and similarly from the other end of the interval withz→1
2z. Then,

E
0

1

@w~z!u~z!21#2dz

>E
0

dS 12
z2

d2D 2dz1E
12d

1 S 12
~12z!2

d2 D 2dz
>2dE

0

1

~12x2!2dx

5 16
15d5 16

15 ~ 3
2 !1/2F E

0

1

~Du!2dzG21/4F E
0

1

~D2w!2dzG21/4

.

~A22!

Hence the lemma is proved andCI'1.31 is an estimate for
the constant.
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Howard’s Lemma II.For functionsw(z) and u(z) satis-
fying w(0)5Dw(0)5u(0)505w(1)5Dw(1)5u(1) and
*wu51, there is a positive constantCII such that

M[E
0

1H 1

k2
~D2w!212~Dw!21k2w21~Du!21k2u2J dz

>CIIF E
0

1

~D2w!2dzG1/3F E
0

1

~Du!22dzG1/3, ~A23!

uniformly in the wave numberk.
Proof. First note that from the normalization,

15E
0

1

w~z!u~z!dz<S E
0

1

w~z!2dzD 1/2S E
0

1

u~z!2dzD 1/2,
~A24!

so

M>
1

k2 E0
1

~D2w!2dz1k2S E
0

1

w2dz1
1

*w2dzD
1E

0

1

~Du!2dz. ~A25!

Then note that

E
0

1

w2dz1
1

*w2dz
>2, ~A26!

so

M>
1

k2 E0
1

~D2w!2dz12k21E
0

1

~Du!2dz. ~A27!

Minimizing over k2, we deduce

M>2&F E
0

1

~D2w!2dzG1/21E
0

1

~Du!2dz. ~A28!

Using Hölder’s inequality ~ab<ap/p1bq/q for 151/p
11/q! with p53/2 andq53 and appropriately chosena and
b, we see that

M>~ 32
3 !1/3F E

0

1

~D2w!2dzG1/3F E
0

1

~Du!2dzG1/3.
~A29!

This both establishes the lemma and provides a numerical
estimateCII'2.20 for the constant.
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