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Building on a method of analysis for the Navier-Stokes equations introduced by[Ma. Ann.117, 764
(1941)], a variational principle for upper bounds on the largest possible time averaged convective heat flux is
derived from the Boussinesq equations of motion. When supplied with appropriate test background fields
satisfying a spectral constraint, reminiscent of an energy stability condition, the variational formulation pro-
duces rigorous upper bounds on the Nusselt nurtiday as a function of the Rayleigh numb@Ra). For the
case of vertical heat convection between parallel plates in the absence of sidewalls, a sifbplifiegbrous
formulation of the optimization problem vyields the large Rayleigh number bound\NL67 R&?—1. Non-
linear Euler-Lagrange equations for the optimal background fields are also derived, which allow us to make
contact with the upper bound theory of Howdi Fluid Mech.17, 405 (1963 for statistically stationary
flows. The structure of solutions of the Euler-Lagrange equations are elucidated from the geometry of the
variational constraints, which sheds light on Busdd'sFluid Mech.37, 457 (1969 ] asymptotic analysis of
general solutions to Howard's Euler-Lagrange equations. The results of our analysis are discussed in the
context of theory, recent experiments, and direct numerical simula{i8t863-651%96)06106-5

PACS numbdps): 47.27.Te, 03.40.Gc, 47.27.Cn, 47.27.Ak

I. INTRODUCTION Navier-Stokes equations with inhomogeneous boundary con-
ditions[3] and, as shown in the following sections, it appears
Conventional theoretical approaches to turbulence includgore closely related to nonlinear hydrodynamic stability
approximate treatments ranging from the imposition of statheory, i.e., the energy methdd], than to statistical turbu-
tistical assumptions and moment hierarchy truncations to thiénce theory. It applies equally to both lamiratationary or
introduction of scaling hypothesdd]. Rigorous analyses time varying and turbulent flows, )/_leldmg rigorous pred|c-
based solely on the equations of motion are typically |eS§|ons free fr.om' uncqntrol!ed qpprox[mgtlons, and an interest-
ambitious, hindered in part by the lack of a regularity proofind @ posteriorirelationship with s?atlstlcal turbulence theory
for solutions of the three-dimensional Navier-Stokes equabaturally follows from the analysis. _ _
tions [2]. In this paper we focus on a specific fundamental Consider an incompressible Neyvt_oman fluid confined to
problem, the rate of heat transport in a layer of incompressthe rectangular volume between rigid isothermal plates as
ible Newtonian fluid, with the goal of deriving quantitative illustrated in Fig. 1. A vertical temperature gradient of mag-
rigorous results directly from the equations of motieith- mpude oT |s.|mposed. In the usual nondimensional units the
out any statistical hypotheses, scaling assumptions, or clofluid’s velocity vector fieldu(x,t)=(u;,u,,us) and tempera-
sure approximations. Specifically, we establish a practicaiure field T(x,t) satisfy the Boussinesq equations
framework for estimating the viscous energy dissipation rate, au
and thus the convective heat flux, directly from the Bouss- —+u-Vu+Vp=cAu+ o R&KT, ()
inesq equations of motion without any additional regularity at
assumptions on the solutions. We do this by using the equa- V.u=0 1.2
tions of motion to derive a variational principle for upper ' '
bounds on the time averaged heat transport rate, utilizing a z
decomposition that we refer to as the “background field”
method. The basis of the principle is a decomposition of the ~u=0,T=0
flow field into a “background” and a “fluctuation” reminis- ¥
cent of, but distinct from, the Reynolds decomposition into i
mean and fluctuating components familiar from statistical Lo oY w=0 T=6T
turbulence theory. Our approach is a development of Hopf's o v :
method for producing priori estimates for solutions of the

0 > X
0 L,
“Address after 1 September 1996: Department of Mathematics, FIG. 1. Fluid is confined between parallel plates of dimension
University of Michigan, Ann Arbor, Michigan 48109-1109. L,xL,, separated by gap of heightin the z direction. Boundary

Electronic address: doering@cnls.lanl.gov conditions are periodic in th& andy directions andT= T for
TElectronic address: const@zaphod.uchicago.edu z=0, T=0 for z=h, andu=0 for z=0 andh.
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We define the Nusselt number as the ratio of the largest
— +Uu-VT=AT, (1.3 possible long time averaged total heat transport to the con-

a ductive heat transport
where o=/« is the Prandtl numbefa ratio of material pa- (J)t
rameters, the kinematic viscosityand thermal diffusivityk) Nu=lim sup
and Ra=ga8Th®/vk is the Rayleigh numbeg is the accel- =
eration of gravity,« is thermal expansion coefficiendT is
the temperature drop across the gap, lrisithe gap width =1+lim sup < f dXJ dYJ dz LbT> :
Compressibility is neglected in all but the buoyancy force t=e
term, the last term if1.1), and the pressure field(x,t) is (1.10

determined by the divergence-free conditionwrin (1.1), k

is the unit vector in the direction(the 3-direction. Lengths ~ where the lim sup notation refers to the limit supremghe

are measured in units of the gap widthand the boundary eventual least upper boundrhe largest possible long time
conditions in the dimensionless variables are no Glig0) averaged energy dissipation rate per unit mass is dengted
on thez=0 and 1 planesT =0 on top andT =1 on bottom, 5

and periodic in thex andy directions, with period&,/h and e=lim sup<0||VU||z>t (1.11)
L,/h, respectively, fou, T, andp. (From this point onL, A ' |

and L, will denote the dimensionless transverse lengths.

The initial temperature and velocity vector fields The connection between the heat flux and the energy dis-

t—ow

u(x,0)=ug(x) andT(x,0)=Ty(x) are square integrable. sipation is seen in the energy evolution equation derived
The conductive heat flux in the vertical direction is con-from (1.1) by dotting with u, integrating over space, and
stant: integrating by parts using the divergence free condiibB)

and the boundary conditions:

L, (L 1
j= dxf "d fdzk- —-VT(x,y,z,t)]=A, (1.4 1
J jo o 4Y] 92k [=VT(xy.zh]=A, (1.4 5 lulz+ ol vulz=o Ra. (112

whereA=L,L, is the cross-sectional area. The instantaneoud he kinetic energy is uniformly bounded foe (0,0)—this
convective heat flux is fact is a by-product of the analysis in this paper—so the

average rate of viscous energy dissipation is proportional to
the time averaged heat flux

Ly Ly 1
J(t)—f0 dxjo dyfodz W(X,Y,z,t)T(X,Y,z,1), e=o RaANu—1). (113

9 Hence estimates of the average energy dissipation rate and
bounds on the average flux are interchangeable, and in this
'Qpphcauon we will focus on the heat flux. The heat flux is
also directly related to the mean square temperature gradient,
as may be seen by multiplying the temperature evolution
equation(1.3) by T and integrating appropriately:

and the instantaneous rate of viscous energy dissipation
spatial dimensiord (typically 2 or 3 is

d

au;
olVulz=c 2 —

ax;

(1.6

2

S ITB+IVTIE=A+3, (114

where| f|, denotes thé.? norm of a functionf (x):
The temperature field remains uniformly bounded. fr(this
fact may also be shown using some of the methods of analy-

Ly L 1 v Gt /
||f||2=(J’ dxj ydyf dz|f(x,y,z)|2> . (L7 sisin this paper so
0 0 0

2
: (VT3
. . : Nu=Ilim sup————.
We are concerned with the time averaged convective heat oo A
flux

(1.15

The ultimate goal is to produce a functional relationship
1 [t of the form NURap). Here we restrict ourselves to produc-
(=~ f J(t")dt’, (1.9 ing rigorous upper bounds on Nu in terms of Ra anty
tJo formulating a variational principle directly from the Bouss-
inesq equations in which the fundamental constraint is iden-
and the time averaged energy dissipation rate tified with a Stablllty condition in the sense of the energy
method. The variational problem will be applied in two
1 rt ways: (i) an upper bound is immediately produced by pro-
<a||Vu||§>t=— f o[ Vu( ,t’)||§dt’. (1.9 viding a “test” background field that satisfies the constraints
and (ii) optimal background fields will be sought by mini-
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mizing the bounds over the appropriately constrained set of U-VU+VP=cAU+c R&T, (2.2
test background fields. We derive Euler-Lagrange equations
for the optimal fields, and in an intruiging correspondence V.-U=0, (2.2

we observe that they are of the same functional form as the B
Euler-Lagrange equations for the maximal heat flux in U-Vr=Ar, 2.3

Howard's upper bound theory, which relies on an additionakatisfying the velocity and temperature boundary conditions.
assumption on stationary statisti&. The general structure - Consider arbitrary perturbatiorialso known as fluctuations
of the solutions of the Euler-Lagrange equations is detery(xt) and 6(x,t) of the stationary solution at hand, so that
mined by the functional geometry of the constraints, and atomplete dynamic solutiona(x,t) and T(x,t) are decom-
this level we find a further relationship with Busse’s asymp-posed according ta(x,t)=U(x)+v(x,t) and T=7(x)+ A(x,t).
totic analysis of Howard's theor}6]. For the separable ge- The perturbations satisfy the evolution equations
ometry considered here, the simplest Euler-Lagrange equa-
tions, a nonlinear boundary value problem for ordinary
differential equations, have solutions that correspond to the  dt
“single wave number” solutions of Howard’s problem. The 2.9
next level of complexity, a boundary value problem for two V.v=

- : . ! . . -v=0, (2.5
coupled sets of ordinary nonlinear differential equations, in-
volves two wave numbers and so on. As will be seen, the
transition from one type of solution to another involves a E+V-V0=A0—U-V0—V-VT, (2.6
loss of stability.

The rest of this paper is organized as follows. The energwith the boundary conditions thatand 6 both vanish on the
method is reviewed in Sec. Il, focusing on the variationaltop and bottom plate§eriodic boundary conditions in the
aspect of this approach to nonlinear stability. A variationalhorizontal directions are taken throughp@tandard integra-
principle for upper bounds on the time averaged flux is for-tions by parts using the boundary conditions &) shows
mulated in Sec. Il and the nonlinear Euler-Lagrange equathat theL? norms of the fluctuations evolve according to
tions for the optimal background fields are derived and dis- 1
cussed in Sec. IV. In Sec. V we use elementary estimates andti —Z ||v||§+ f v-VU.v dx=— g||Vv||§+ o RaJ' v36 dx,
asymptotics to produce explicit boun@silminating with the dt 2

v
—+Vv-Vv+v-VU+U-Vv+Vp=0cAv+o R&d,

large Rayleigh number bound N0.167 R&?-1). In Sec. 2.7
VI we analyze the optimal background problem to deduce an 1
improved bound (Nu—1=<0.257 Rd® when the Euler- a§||0|\§+f v-V 76 dx=—|V|3. (2.9

Lagrange equations take on the simplest structure, which

turns out to be the case for a bounded range of Rahe basic solution is said to be “energy stable” when ttife

(Ra=23 300. Finally, in Sec. VIl we compare these results norms of the fluctuations decay monotonically.

with experiments, direct numerical simulations, and theories, Combining(2.7) and(2.8) appropriately, we find

pointing out directions for further development of this ap-

proach. For completeness, a brief synopsis of Howard'’s upg E

per bound theory is provided in the Appendix. dt2
This is the final article in a series of three following the 1 1

introduction of this approach in an application to shear tur- = _f [_ |VV|?+ ———Vv-VU-v+v-(V7—k) 6

bulence[7]. The first paper of the series developed the gen- Ra o Ra

eral approach for a boundary-driven shear lajg3r Those

results were compared with recent experimg@isand have + |V¢9|2] dx. 2.9

been further developed by others: Marchioro extended the

method for application to time-dependent boundary condiHence a sufficient condition for tHe? norms of the fluctua-

tions [10] and Gebhardet al. reformulated the variational tions to decrease is that the right-hand sidé€20®) is always

problem to refine the original analytical estimafel]. The  negative, i.e., that the quadratic functional

second paper in the series dealt with the problem of channel

2 2
— |Ivl5+
Sl 0]

flow driven by a pressure gradiefit2]. 1AV, 6} :j i |Vv|2+ _1 v-VU-v
Ut Ra o Ra
Il. ENERGY STABILITY AND THE CALCULUS +v-(Vr—k)o+ |V0|2 dx (2.10

OF VARIATIONS
is positive for nonvanishing functiong&(x) and divergence-
In this section we provide a short review of the elementsree vector fieldsv(x) satisfying the fluctuations’ boundary
of the energy method of nonlinear stability, which plays aconditions. When this is the case, the sum of the squares of
major role in the subsequent analysis. Suppdée and#(x)  the L? norms of the perturbations if2.9) will decay expo-
are a stationary solution of the Boussinesq equatiér§—  nentially with a minimum decay rate®, given by the solu-
1.3, tion of the minimization problem
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L0 = in Iy AV, 6} , (2.12 pnl=—A60-vs, (2.2)

- ||V||§+||9H§ where we recognize the same eigenvalue problem aknthe

o Ra earizedstability problem derived from Eq$l.1)—(1.3). The
convection stability problem is a special case where the nec-
essary and sufficient conditions for stability and instability
fhateh: Rgonineal - plinean— pa > 1707. This is also a spe-
clal case where the Prandtl number drops out of the stability
question, i.e., Radoes not depend oar, but only on the

w@=infl u.AV, 6}, (2.12 aspect ratio of the convection cell (,L,).

For Ra<Rg,, then, these considerations imply that the
where the minimization ovev and 6 is constrained by the unique time asymptotic state of the system at hand is the
normalization condition pure conductive state if2.17) and (2.18. Hence, in that

case the long time averaged viscous energy dissipation rate
= L IVII2+] 612 2.13 vanisheqde=0) and the long time averaged heat transport is
Ra' 2 z ' conductive (Nu=1). Both linear and nonlinear stability
. o ~_ theory remain silent concerningand Nu beyond the critical
Straightforward application of the calculus of variations Rayleigh number, but as will be shown in the next section,
shows that the temperature and velocity vector fields realiziemarkably similar mathematical questiding., the spectral
ing the minimum exponential decay rate satisfy the Eulerynalysis of a linear operator as (@.14—(2.16)] are relevant

where the infimum is taken over all temperature fieddand
divergence-free vector fields satisfying the boundary con-
ditions. Because the numerator and denominator are bo
guadratic in6 andv, this may be rewritten

Lagrange equations to the behavior ofs and Nu beyond the critical Rayleigh
V= —GAV+Vp+L(VU+ VU v+ o RAV7—K)6, number, even into the turbulent regime.
2.1
219 lll. ENERGY STABILITY AND ENERGY DISSIPATION
0=V.v, (2.15

Long time limits of finite time averages need not exist
__ 1, _ even if finite time averages are bounded. Moreover, the long
w0 Ab+zv-(Vr=k), (216 time averages in Eq$1.8) and(1.9) need not be unique: for

wherep is the Lagrange multiplier enforcing the divergence-8Vven if the limitt—cc did exist, it would generally depend on
free condition and tr means matrix transpose. Equation8€ initial conditions. Eventual bounds on the long time av-
(2.14—(2.16 constitute a self-adjoint spectral problem erages(the |I.ml't su_prema exist, nevertheless_, and we may
where the eigenvalug is the Lagrange multiplier enforcing produ_cea priori estimates for those bounds directly from the
the normalization constraint if2.13. The minimum expo- €quations of motion. o o
nential decay rata(o) is the lowes{ground stateeigenvalue In this section we prove a varlatlonal principle for upper
of this problem and thus the nonlinear stability condition forbounds on the largest possible long time averaged heat flux,
the stationary solutiofU,7) may be expressed as the condi- €xPressing the upper estimate as an infimum over a con-
tion that this eigenvalue problem has a positive spectrum$tra'n3d set of functions. As will be seen, the constraint is an
Restated, energy stability considerations lead to a variation&ffective (energy stability constraint on flow and tempera-
problem in (2.1 or (2.12, for which the Euler-Lagrange ture fields. The variational bound is analogous to a Rayleigh-
equations are the spectral problem(2114—(2.16). Ritz variational principle wherein upper estimates may be
An increased Rayleigh number, appearing as it does as ﬂfgeduced wlthout solvmg the entire minimization 'problem;
prefactor of an indefinite operator {®.14), generally leads JUSt producing test functions satisfying the constraints is suf-
to a decrease in nonlinear stability as measured by the pogicient for that purpose. _
tive magnitude of the lowest eigenvalue. Note that negative 10 S€& how the bounds come about, we start by consid-
eigenvalues in the spectral problem for energy stability drng stationary squuqns not to the equations of motion, but
not imply that the base solution isot a physically possible 0 2 relqted set of partial differential equations. LEk) and
time asymptotic solution; it merely indicates the existence of (X) satisfy
initially nondecaying transients. It is necessary to look at the

linearized eigenvalue problem to determine instability for U-VU+VP=0 Rekr, CHY

small perturbation§13]. =
The purely conductive solution V-U=0, (3.2
U(x)=0, (2.17 U-Vr=0, (3.3

1 along with the boundary conditiond&=0 for z=0 and 1,
=1~z (218 7=1 for z=0, 7=0 for z=1, and everything periodic in the

is a case in point. The energy stability eigenvalue promenhorizontal directions These are an “inviscid” version of

for this solution is the stationary Boussinesq equations, characterized by the ab-
sence of the Laplacian terms. Many solutions to these equa-
uv=—oAv+Vp—o R, (2.19 tions exist and an entire class of explicit solutions will be

produced below. We refer to a solutigd,7) to Eqs.(3.1)—
0=V.v, (2.20 (3.3 as “background” flow and temperature fields.
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Consider arbitrary perturbatior(fluctuations v(x,t) and

d
0(x,t) of the background fields, so that complete solutions dt 2 (m

u(x,t) and T(x,t) are decomposed according uéx,t)=U(x)
+v(x,t) and T=7(x)+ 0(x,t). The perturbations satisfy

ov
—+Vv-Vv+v.-VU+U-Vv+Vp=cAv+ oAU+ o R&,

at
(3.9
V.v=0, (3.5
00
—+Vv-VO=A0+A7—U-VO—Vv-Vr, (3.6

ot

with the boundary conditions thatand # both vanish on the
top and bottom plateésame boundary conditions as for the
energy stability analysjsTheL? norms of these fluctuations

evolve according to

d1
di2 v]|Z+ fv VU-v dx=—o]|VV||3— f Vv:VU dx
+o Raf v36 dx, (3.7
d1
G308+ [ v-vro ax=— Vo3 [ vo-v7ax

(3.9

Note that norms of the gradients of the full solutions satis

||vU||§=||vu||§+2af VV:VU dx+ VU2 (3.9

[T3=173+2 [ Vo-vraxtla 10

which may be used to eliminate the cross teirinsolving
Vv:VU and V#-V7) on the right-hand sides of3.7) and
(3.9):

d1l i T
R 2 . X - _ _ 2_ 7 2
i 5 M+ [ v-vUv == T oviz- 5 i

i 2
+ > [VU||5+0 Ra | v36 dx,

(3.1)

j V-V 70 dx=— 3|V 62— | VT|Z+ 1|V A2
(3.12

S liz

Combining(3.11 and(3.12 appropriately, we find

5961

1
M3+ 1A + 5 g IVl + 39T

1
— 2,1 2_ 2
2 RaHVU”2+ 2||VT||2 J ( 2 RalVV|

1
- v . . — L 2
+—=aV VU-v+v-(V7—k) 0+ 3|V 4 ]dx

(3.13

The time average of3.13 yields

1 1 1 ol2+16 5
=[S IVC DIE= — IV 03+ 6 v

2|, 1L 2 2
—l16C-.0)z | + 5 VUl +<V T2

|[Vv|?

1
— 2 2 _
_Ra||VU||2+||V7||2+2< f SRa

1
+mv-VU-v+v-(V7—k)0

+1 |V0|2]dx> ) (3.19
t

Becausay, v, T, and ¢ stay bounded in.? (we do not prove
this fact explicitly, but it follows from some of methods de-
veloped here; see the analogous argument in R@f.for
exampl¢ we may take the long time limit supremum of
(3.14 combined with the time averaged versions(fl2

fyand (1.14 to obtain

A+2 lim sup(J>t—— [VUl3+(V 73

t—o

+lim sup(—2Hy AV, 6});,

t—o

(3.19

where the quadratic function#, {v, 6} of v and 6 is de-
fined by

1
HU,,{V,G}ZZJ [ 5 Rale|2 RV VUV

+v-(Vr—Kk) 6+ 3|Vo|?tdx. (3.1

The argument now proceeds by noting tifa  {v, 6}
=0, i.e. if it is a non-negative quadratic form for
divergence-free vector fieldsand functionsd satisfying the
fluctuations’ boundary conditionthenthe background fields
provide an upper limit on the energy dissipation rate and
convective heat transport:

1
A+2 lim supgJd)= R—aHVU||§+||VTH§. (3.17

t—oo
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The conditions orlJ and = imposed by the constrair , Restated, time averaged energy evolution considerations
=0 are remarkably analogous to the energy stability critelead to the bounds i3.17) and (3.18 subject to the con-
rion I >0 for stationary solutions of the Boussinesq equa-straint onHy, ,, leading in turn to the variational problem in
tions: Hy . andly . differ only by coefficients of 2 in their (3.19, or (3.20—(3.21), for which the Euler-Lagrange equa-
positive definite terms in the integrand. Unraveli(@17), tions are the spectral problem i(3.22—(3.24). The first
we deduce the heat transport bound challenge is to produce appropriate background fields and
verify the spectral constraint, which will be done explicitly
in Sec. V. Ultimately the goal is to produce thestback-
ground fields, which will themselves be the solution of a
constrained minimization problem where the spectral con-
provided that the field8) and  (a) are solutions of the “in-  straint, itself the result of a minimization problem, is im-
viscid” equations(3.1)—(3.3) satisfying the boundary condi- posed. The next section is concerned with developing a ver-
tions for the stationary Boussinesq problem afil are  sion of the “ultimate” constrained variational problem and
“stable” in the sense that , is non-negative. to deriving the associated Euler-Lagrange equations for op-
We will refer to the apparent marginal energy stability timal background fields. Afterward, in Sec. VI, the optimal
condition on acceptable background flow and temperaturbackground fields will be analyzed to produce improved
fields as thespectral constraintExploiting this analogy fur- bounds over a restricted range of Ra.
ther, we will also refer to background field&),7) with

1
N @IIIVUH%JFHVTII% (3.18

U$§+ﬂ

Hy >0 as _stable background fields_ and those W_ilHUJ, IV. VARIATIONS ON A VARIATION:

=0 asmarginally stablebackgrgund fields. Indeed, in direct OPTIMAL BACKGROUND FIELDS

analogy to the energy stability problem, whether or not

Hy,, is non-negative is determined by the sign\d¥, given Restrict attention to the class of background fields consist-
by the solution of the minimization problem ing of horizontally stratified temperature profiles and plane

v.6) parallel shear flows:
. HU,T v,6
NO=inf] —————1. (319 UX)=iU(2), .

——== [VI3+] 613

o Ra 7(x)=1(2), 4.2
The infimum is to be taken over all temperature fiefdsnd .
divergence-free vector fieldg satisfying the fluctuations’ WhereU(0)=0=U(1), {0)=1, and {1)=0. It is easy to
boundary conditions. Further, because the numerator and d&¢€ that any such functions satisfy the background field equa-

nominator are both quadratic fandyv, this may be rewrit- tions (3.1)—(3.3). Only the shear rate and thermal gradients
ten enter into the problem from this point on, so we introduce

the functions

AO=infHy {v,6}, (3.20
AV} du(z)
where the minimization ovev and 6 is additionally con- d(2)= dz (4.3
strained by the normalization condition
1 -1+ 22 (4.4
z)= , .
1= — IvI3+[ 6l (3.21 dz

The temperature and velocity vector fields realizing the mini-WhICh are in one-to-one correspondence with the background

mum in (3.19, or (3.20 and (3.2) satisfy the Euler- profiles U(z) and 7(z) when they are constrained to have

. mean zero:
Lagrange equations
AV=—0cAv+Vp+(VU+VU")-v+o RAV7r—k)#, j1¢(z)dz=0, 4.5
(3.22 0
0=V_-y, (3.23 1
f P(z)dz=0. (4.6)
NO=—AO+v-(V7r—K), (3.29 0

Then the upper bound problem can be cast in the form of a

wherep is the Lagrange multiplier enforcing the condition - ! X
variational problem. In the preceding section we proved the

V-v=0 and tr means matrix transpose. Equati¢82— _
(3.24) constitute a self-adjoint spectral problem, the eigen-following. , _
value) being the Lagrange multiplier enforcing the normal- | €oremFor every solution of Eqd1.1)—(1.3) with the
ization constraint in3.21). The extremum\? is the lowest Prescribed boundary conditions,

(ground stateeigenvalue of this problem and thus the spec-

tral constraint on the background fieltl$,7) is the condition Nu< 1+ inf 1 i fl¢(z)2dz+ 1 flz,/;(z)zdz]

that this eigenvalue problem has a non-negative spectrum, 2Ralo 2 Jo '

i.e., \9=0. 4.7
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where the minimization is performed over mean-zero func- _ 1 1
tions ¢ and ¢ constrained by the spectral condition that )\(0>{¢1,1//1}=|an { m|VV|2+ md)l(z)vlvg
O<H = ! Vv|? ! + —2]vgh+ 3 |V % d 4.1
<H, {v,0}= Z_R’a| v| +m¢(2)0103 [41(2)—2]v30+ 3 [V 6% dx, (4.19
+[¥(2)— 2]+ 3 |V 6?1 dx, (4.8 Ny, }=inff L |vV|2+i $2(2)v1v
2re 2Ra o Ra 277173

whereH,, [{v,6} is defined for divergence-free vector fields
v(x) and temperature field® satisfying the fluctuations’
boundary conditions.

The spectral constraint is equivalent to the non-negativitpvhere the infima are taken over the set of normalizect

of the lowest(“ground state’) eigenvalue\® of the self- cording to(4.14] divergence-freer’s and ¢'s satisfying the
adjoint problem fluctuations’ boundary conditions. When bot%{¢,,y;}

and A\9{¢,,4,} are non-negative, then the right-hand sides
ap above are non-negative fany appropriatev and 4. Hence
\vi=—0cAv,+ ™ + d(2)vs, (4.9  for any such appropriate and 6, the convex combination of
the functionals is non-negative,

+[a(2)—2]vs0+ 3 |V¢>|2}dx, (4.19

ap 1 1
Nvo=—0Av,+ 7y (4.10 0$j [2—Ra|VV|2+m[t¢1+(1—t)¢2]vlva

+[tg+(1-t)p—2]v36+ 5 |V 6% d
)\U3:—O'AU3+(;—Z+¢(Z)01+URdz,b(Z)—Z]ﬂ, [ta+ (1=t g =2Jusb+ 5 [V 6] dx

(4.1 =Hig,+ 10, toy+ 100y (4.17
_ ﬂ % % @12 and taking the infimum over and # we deduce
ox  dy 9z’ ' 0=NO{tg+(1-t) ¢ty +(1-t)gp}.  (4.18
NO=—A0+[(2)—2]vs, (4.13 This convexity property implies that the minimization in

(4.7) is realized in one of two ways. The absolute minimum
d possible value of the Nusselt numhb@tu=1) is realized at
the origin of the space of profiles, i.é¢,)=(0,0), and this
will be the solution of the variational problem if the pair
(0,0 satisfies the spectral constraint; see Fi@).2A suffi-
cient condition for this is stability of the pure conduction
state, the state of affairs at low Rayleigh number. At high Ra,
the origin is no longer contained in the convex set of spec-

_ 1 2 2 trally constrained background functions and the bound on

1 lwllz+ 1 ll2- (4.1 . ! ; ¢

o Ra Nu—1 is precisely the square of the distance from the origin

to the convex set, where we utilize thé norm

with boundary conditions=0 and #=0 for z=0 and 1 an
everything periodic inx and y. In the above,p is the
Lagrange multiplier enforcing incompressibility ainds the
Lagrange multiplier enforcing the natural normalization for
the eigenfunctions,

In the following we will use the notation@=x©{¢,} to
explicitly display the functional dependence of the ground e
state eigenvalue on the background profile functignand '

.

1 1 1 1/2
R_aJo &(z)%dz+ Jo w(z)zdz) . (4.19

The one-sided nature of the spectral constrainfThe distance to a nonempty convex set containing the
(\9{¢,y4=0) makes the variational problem for the extre- origin is uniquelyrealized by a point on theoundaryof the
mum temperature and flow profiles appear nonstandardiet as illustrated in Fig.(B). (The existence of the solution is
However, a simple observation allows us to transform theguaranteed by the nonemptiness of the convex set, which we
constraint into an equaliti\ ©{¢,}=0), making way for the  shall establish in Sec. YWe conclude that when the origin
application of the usual method of Lagrange multipliers todoes not satisfy the spectral constraint, the minimization
implement it. The key observation is that the set of back{problem is solved by a background profile just marginally
ground profiles §(z),¥(z)] satisfying \?{¢,y4=0 is con-  satisfying it, i.e., the optimal background profile pairds
vexin the Hilbert space of pairs of mean zero, square intethe isospectral surface?{¢,y1=0.
grable functions or{0,1]. This means that if¢;,;) and Now we are in a position to apply conventional con-
(é,,10,) each satisfy the spectral constraint, then fert&1  strained variational calculus. For Ra high enough so that
the convex combinationtp;+(1—1t)¢,,te+ (1—1t) ;] (¢,)=(0,00 does not satisfy the spectral constraint, the
also satisfies the spectral constraint. This is seen by writingruler-Lagrange equations for the optimal background fields
AN, 4} and N, 45} in the variational forms are
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FIG. 2. lllustration of the functional convexity property enjoyed

by the background field&p,#) in (a two-dimensional slice dfthe
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In the abovey® and 4 are the ground state eigenfunctions
of (4.9-(4.13 normalized according to(4.14. The
Lagrange multipliersa and 8 are chosen to enforce the
mean-zero constraint oth and ¢ so (4.21) and (4.22 be-
come

¢(z>=2y( f “dx f Vdy v®(x,y, 200 (x,.2)

1 Ly Ly
- dz’f dxf dy v 2(x,y, 2 ) v (x,y,z")

(4.25
and

W(2)= 27( JOLXdXJOLydy v (x,y,2)09(x,y,2)

1 Ly Ly
—f dz'f dxf dy v (x,y,z') 609 (x,y,z") |,
0 0 0

(4.26

function space of pairs of mean-zero functions on the unit interval.

The origin is the optimal point when it is contained in the convex

set, as in(a), and the unique optimal poinidot) occurs on the
boundary when the origin is not contained in the set, db)inin (b)

the normal vectors to the isospectral surface of marginally stable

profiles are shown at two points. Typicallgashed the normal is
not aligned with vector from the origin, while the optim@bolid)

wherey is the remaining Lagrange multiplier used to enforce
the marginal stability constraint.

The equations to be solved, then, are the ground state
equationg4.9—(4.13 closed by(4.25 and(4.26); this is a
nonlinear and nonlocal elliptic boundary value problem in

. . . . . 0
occurs when the vector from the origin is parallel to the normalWhich the Lagrange multipliey is to be adjusted so that®

vector.
) 1 1
_ 1 2
0= 5o { HslP+a| odz s [ uzaz
+7A(°){¢,¢}], (4.20

whereq, 8, andy are Lagrange multipliers. Explicitly, these
equations are

S\
O=¢>(Z)+a+}/w, (42])
S\
0=¢(Z)+B+7m, (4.22

vanishes. The optimal flow and temperature profiles are sub-
sequently reconstructed from the resulting ground state
eigenfunctions/? and 4% via (4.25 and (4.26.

The Euler-Lagrange equatio4.25 and(4.26 may also
be derived from a geometric argument in a picture that gives
us some insight into the nature of the solutions of the opti-
mization problem. Assume for the moment that the margin-
ally stable isospectral surface whev@®=0 is smooth in the
sense that there exists a unigue, one-dimensional normal vec-
tor at and near the optimal point. Referring to the sketch of
the geometry in Fig. @), it is clear that the optimal solution
is that point in the Hilbert space enjoying the property that
the vector connecting the origin to the isospectral surface
A9=0 is aligned with the normal vector to the isospectral
surface. The normal vector is precisely the functional deriva-
tive [6N©/5¢(2), 5\ 5y(2)] projected onto the space of
pairs of mean-zero functions. Let be the proportionality
constant between the vectop(z),#(z)]—from the origin

where the variational derivatives of the ground state eigento the optimal point—and the normal vector. The Euler-
value are evaluated by the usual method of regular spectr&@grange equations are theh25 and(4.26). This geomet-

perturbation theory:

S\(© Le (L o )

5¢(z):2f0 dxfo dy v{2(x,y,205(x,y,2),
(4.23

S\O Ly L

S(2) :ZL dXJO "dy 0 (x,,2)00(x,y,2).

(4.29

ric viewpoint also makes it clear that when the origin is not
contained in the set with®>0, then the Lagrange multi-
plier y is necessarily positivéhe vectors are parallel and not
antiparalle).

In view of the horizontal translation invariance of the ei-
genvalue problem in(4.9—-(4.13, the equations may be
separated by the Fourier transform in the horizontal direc-
tions and this suggests a strategy for solving the Euler-
Lagrange equations. We define the horizontally Fourier
transformed variables
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=0

=0

FIG. 3. Isospectral surfaces {a two-dimensional slice pfthe

space of background functions, for three different wave numbers.
The convex set over which the variation takes place is the intersec-
tion of the convex sets for each wave number. The optimal profile is

on one of the isospectral surfaces, furthest from the origin.

uy(2)
vi(2)
W (2)
ak(2)
{k(2)

v1(X,Y,2)

vZ(va=Z)

Ly Jo 0 p(x,y,2)

0(x,y,z)

(4.27

where k=(kq,k,)=(2mn,/L{,27mn,/L,) and (,,n,) are
pairs of integers. Thea/9x—ik, andd/dy—ik, and, using
the notationk?=|k|?>=k?2+k3 and D=4/dz, the eigenvalue
problem becomes

MU= o(— D2+ KA u+ik g+ d(2)wy,  (4.29

Mok=0(—D2+k?) v +ik,0y, (4.29
MW= o(— D2+ kH)wy+ Day+ ¢’ (2)uy

+o R §(2) ~ 2], (4.30

O=ik ug+ik,v+Dw,, (4.3)

Mebi=(=D?+KA) G+ [p(2)— 20wy, (4.32

with boundary conditionau,(z), v¢(2), w,(2), and {(2)

5965

When the overall marginally stable isospectral surface
A9 a,y4=0 is smooth, then the surface is realized by one of
the single wave number isospectral surfagesdulo nonge-
neric tangencies of isospectral surfgceehe optimal point
[¢«(2),¥1(2)] on thekth isospectral surface is also charac-
terized by the property that it is parallel {the projection
onto mean-zero functions )fthe functional derivative
[N 64 (2), 01 8y(2)]. That is, it is the solution to
(4.28—(4.32 closed by the relations

b(2)= yk( u(2)* w2 (2) +u (2w (2)*

1
- | e w0 @ w0
0

(4.39

and
(2) = yk( {Q@*wQ(2)+ (22w (2)*

- fol{/:&°)<z'>*w<k°><z'>+/:<k°><z')w<k°><z'>*}dz' :
(4.35

Expressiong4.34) and (4.39 inserted into(4.28—-(4.32
result in ordinary differential equations, a nonlinear bound-
ary value problem where the Lagrange multiphgris to be
adjusted to enforce the{”’=0 constraint. The true optimal
background profile is that which is furthest from the
origin—it must be furthest for otherwise it would be exterior
to the stable region of some other wave number—so the
strategy is to solve the problem for each individikahnd
then choose the one with the largest valud|@f,y)|. The
minimization scheme proposed for edchas been shown to
be consistent and the entire process has been carried out for
a model problem[14], and to illustrate how this process
works in practice we will apply the formalism to derive ex-
plicit upper bounds for the heat transport in Sec. V. Further-
more, it is straightforward to implement this procedure
(minimize for eactkk and then maximize ovés) numerically
and, as will be described in full detail elsewhéfe], the
k by k strategy is successful, at least for a limited range of
Rayleigh numbers.

There is a crucial point about this solution process that
must be recognized: whenever a candidate background field
is derived as the result of the min-max process described
above it must be stable fail wave numbers in order to be

vanishing az=0 and 1. The ground state eigenvalue will be the trye solution. The single-isospectral surfaces move

denoted\ (V=1 ({4, y}.
As illustrated in Fig. 3, for each wave vectorthere is a

around as Ra varies, and what can go wrong with the proce-
dure outlined above is that the optimal profile may become

convex set of stable background profiles characterized byegenerate. The onset of degeneracy means that the optimal
)\f(o){¢,z/;}>0, with an isospectral surface of marginally has ground state eigenvalue zero for distinct wave numbers,
stable profiles given byxﬁo){¢,¢}=o. The set over which signaling an intersection of the single wave number isospec-
the minimization takes place is the intersection of the stabldral surfaces. This indicates that the optimal for nearby val-
sets for all the wave numbers: ues of Ra willnot generally be on a smooth portion of the
overall marginally stable isospectral surface, as illustrated in
Fig. 4. It is apparent that the optimal is then no longer char-
3 acterized by the criteria given above relating the normal to

{(¢.wl>\“’>{¢>,t/f}>O}=mk{ws.wlx&"){qb,e/x}ao%‘.1 ;
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FIG. 4. If the ground state at the optimal is not unique, then each + 5 5 57 dz' |, (4.39
of the degenerate ground states gives rise to a normal and in general ¥(2) 0o OY(Z')
they need not coincide. In that case the isospectral surface is not
) . o where
smooth at the optimal and the min-max procedure is invalid.
A
L . . =y® (0) (0) (0)
the vector from the origin: indeed, there is not a unique nor- sh(z) (2*"WiT (2 +uT (2w ()" (439
mal vector at the optimal point and the optimal is further
from the origin than the maximum distance to the sirigle- and
isospectral surfaces individually. S\
The problem may still be interpreted geometrically. Re- _':§§0)(Z)*Wi(0)(z)+550)(Z)Wi(0>(z)*' (4.39
ferring to Fig. 5 for the case of doubly degenerate optimal o(2)

background fields, the question is how to characterize th%xpressions(4.36) and (4.37) are then to be inserted into
closest point to the origin on the intersection of two margin—(4_28)_(4_33 for k, andk, simultaneously, which constitute
ally stable i§ospe(;tral s_urfaces. The codimepsion—z set whetg ¢osed system to be solved while adjusting the Lagrange
the two codimension-1 |sospectral surfaces intersect dogs NR{ultipliers y, and y, so that botm\{? and\ ) vanish.
have a normal vector, but instead a normal 2-fdemssoci- When the optimal background fields are doubly degener-
ated with the linear subspace spanned by the two simultagte they lie on a set of codimension 2 in the space of back-
neous normal vectors corresponding to the two isospectrground functions and the Euler-Lagrange equations are a
surfaces The generalization of the geometric criterion for system of two coupled nonlinear ordinary differential bound-
the optimal is that the vector connecting the origin to theary value problems.
optimal point must be spanned kiye., a linear combination This process may be generalized: when the optimal back-
of) the normal vectors making up the 2-form at the optimalground fields aréN-fold degenerate they lie on a set of codi-
point. mensionN in the space of background functions and the
Let k; andk, be the wave vectors of the optimal back- Euler-Lagrange equations are a systenNafoupled nonlin-
ground field, withA 9{¢,y4 and\P{#,4} the corresponding €ar ordinary differential boundary value problems. The cou-

ground state eigenvalue functionals. Then the EulerPling occurs through the simultaneous appearance of contri-

Lagrange equations expressing this criterion are butions of N wave vectors in the relationship between the
optimal profiles and the ground state eigenfunctions accord-
ing the generalization of the formulas above,

=0 > -(5““_ 1 o\ )
y e $@=2 5507 |, ey 97| 440
wKr g Hro V(a0 noap
o w(Z):IZEl ’)/I(él//(Z)_J'O 5¢(Z,) dz ) (44D

Solving theN equations foikq, . . . ky simultaneously, each
of the N Lagrange multipliersy; is to be adjusted so that
AMO=0,i=1,... N, placing the point on the marginally
stable isospectral surface.

It is worthwhile noting that the solutions of all these
classes of problems are indeed solutions of the originally
FIG. 5. Isospectral surfaces {a three-dimensional slice ofne ~ POsited Euler-Lagrange equations(#295 and(4.26). In the
space of background functions, for two different wave numberspartia| differential equation formulation, the nonlocal nonlin-
This is the picture when the ground state of the optimal backgroun@arity allows for separation via Fourier transformation in the
fields is doubly degenerate. The optimal point occurs when théiorizontal variables, but the separation may be to into a vary-
vector from the origin lies in the plane spanned by the two normaldng number of components depending on the coupling of
along the codimension-2 surface. different wave vectors in the expression for the optimal
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background fields. This is what corresponds to the hierarching the trial background fields further. Although the bounds
of classes of solutions, to our identification of the degeneracybtained in this section will not be optimal, the process of
condition, and to the presence of higher-dimensionaleriving them will be useful for guiding the analysis of op-
“creases” in the marginal isospectral surface. In light of timal solutions in Sec. VI. Moreover, the existence of a
these correspondences we may interchangeably refer to tRgable background profil®ptimal or no} guarantees that the
optimal fields as lying on codimensidw-hypersurfaces, as convex set of stable profiles is nonempty and thus that a
being background fields with aN-fold degenerate ground unique optimal background field exists.

state, or as comprisiny wave vector solutions of the Euler-  choose the background flow field to be zerd (k)

Lagrange equations. =0 =0 th bound i
For the case of vanishing background flog=0 from the = $(2)=0]. so the upper bound is

beginning, the Euler-Lagrange equations derived here for 1 (1
the optimal background temperature profile are of the same Nus1l+ - j P(z)%dz, (5.9
functional form as the Euler-Lagrange equations in 2 Jo
Howard’s[5] upper bound theory for turbulent convection. , .
In that work the variational problem is to determine thefor functions(z) satisfying
maximum heat transport constrained by the power balance N
derived from the Boussinesq equations supplemented with f ¥(2)dz=0, (5.2)
the hypothesis of “statistical stationarity,” i.e., the assump- 0
tion that horizontal spatial averages are time independent
[5,16]. This correspondence in the forms of the resultingand the spectral constraint
Euler-Lagrange equations is surprising at least because the
present analysis involves no statistical hypothesis. We note, 1 5
however, that the actual differential equations to be solved O=<H,{v, e}zf m|VV| +[(2)—2]v30
are not precisely the same due to different appearances of
Lagrange multipliers, which must be adjusted to satisfy dif-
ferent constraints. We have not been able to identify a direct
connection between the fundamental variational problems
posed by Howard and ourselves: only this quantitative relaelefined for divergence-free vector fieldfx) and tempera-
tionship at the level of the optimal background profile ap-ture fieldsé satisfying the fluctuations’ boundary conditions.
pears to be the common feature of the two optimizationNote that the Prandtl number drops out of the picture in this
problems. But this correspondence is enough to allow for aestricted formulation.
guantitative comparison of the results of the two approaches, The conduction profile corresponding #=0 is an ac-
and the relationship between the heat transport bounds igeptable trial function only for small enough Ra where the
Howard’s theory and the bounds derived by the method deindefinite cross ternt~v36) in H, is dominated by the posi-
veloped here will be discussed further in Sec. VI and thetive definite first and last terms-|v|? and [V 6%). For high
Appendix, where a rigorous connection between the two iRRa the temperature profile must be adjusted to enforce the
established. spectral constraint. I§{z) =2, then(5.3) holds, but(5.2) is

In his original papef5] Howard recognized the variety of violated. The task is to satisf$.2) and(5.3) simultaneously,
solutions to the Euler-Lagrange equations that potentially exwhich is accomplished by choosingso thaty~2 on most
ist, but he concentrated on deriving estimates under the fulf the interval[0,1] with departures near the boundaries at
ther presumption that the maximizing fields were of thez=0 and 1, where; and§ are forced to zero by their bound-
single wave number variety. Busse’s asymptotic analysis o&ry conditions.
Howard's Euler-Lagrange equatior$] implied that the What works is a background temperature profi{e) of
maximizing fields are single wave number solutions only forthe form
a bounded range in Ra and that in a sequence of discrete
transitions theN wave number solutions realize the maxima 1 (1

+ %|V0|2]dx, (5.3

where N increases without bound as Ra increases. If this
same phenomenon occurs in the background flow formula-

tion, then the picture that emerges is one where the ground 7(2)=1{ % o<z<1-¢ (5.4
state of the optimal profile necessarily becomes increasingly 1 e
degenerate as Ra increases. That is, the optimal profile be- 3_1 (1-2), 1-osz<1,

comes increasingly marginal in the sense that it is marginally

stable for an ever increasing number of wave numbers. Wgs jllustrated in Fig. 6. The parametér(0<s<%) will be

will return to this point further in the discussion in the con- referred to as the “boundary layer thickness” and the asso-
cluding section, but now we turn to the problem of producingcijated ¢ function is

explicit bounds, establishing first that the convex set of

stable background flow profiles is not empty. 1
2— 5 O=z=<6
V. EXPLICIT BOUNDS NEGLECTING
INCOMPRESSIBILITY W(2)=1"(2)+1=< 2, ész<1-6 (5.5
Rigorous analytical bounds on the heat transport may eas- 2 E 1—s<z<1.

ily be obtained from the variational formulation by restrict-
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FIG. 6. Trial background temperature profi€z), as given in  where we have also extended the upper limit inzhandz”
(5.4). The parameteb is referred to as the boundary layer thick- integrations all the way té. Thez integral in(5.10 may be
ness. The dashed line is the temperature profile in the pure conduperformed, and applying the Schwarz inequality toxrend
tion state. y integrals as well, we find

As we will now establish, the boundary layer thickness in| Ly Ly s
f f dyf dzvs6

this profile may be adjusted so that the spectral constraint i
52 Lx Ly é aUg 2
< — "N —
2 fo dxfo dyfodz 9z

satisfied.

Rather than solving the eigenvalue problem correspond-
ing to (5.3) in order to verify the spectral constraint, we may
perform the analysis directly in terms of the quadratic form
Hv.6}. The cross term irH , is estimated in terms of the

1/2

1/2

first and last terms as

LX
dx
0

Ly 6
dyf dzuvs6
0 0

Ly Ly 1
+f de dyJ dzvs0
0 0 1-5
1 Ly Ly 5
s—(U de dyJ dzuvs6
o\|Jo 0 0

Ly 1
dyJ dzuvs6 )
0 1-6

(5.6

f [(2)—2]vz60 dX =5

LX
dx
0

Consider the first term in the set of large parenthesés.8).
Because ; and 6 both vanish az=0, the fundamental theo-
rem of calculus ensures that

Ly Ly 5
f dxf dyf dzvs0
0 0 0
Ly L 8 z J X,y,z’
=f dxf ydyf dz(fdz'Ly))
0 0 0 0 Jz

z a0(x,y,z"
" fdz’ &)‘
0

az"
Elementary application of the Schwarz inequality implies

z z dug 2

fdz’ fdz’(—,)
0 0 0z

a(x,y, 36 \?

U dz/ ——— y fdz”( ,,)
Jz

Combining(5.8) and (5.9 with (5.7) we observe that

(5.7)

112
, (59

=\z

0z’

1/2

<z

(5.9

Ly Ly 5 96 \2
X f dxf dyf dz"(—,,) (5.11

0 0 0 Jz
A similar expression holds for the other end of the interval
nearz=1. Putting togethe(5.11) and the corresponding re-
sult near z=1 with the aid of the inequality

2ab=ca®+b?/c, where the positive parameteris free for
the moment, we deduce

f [(2)—2]v36 dx

1 & 1 2
g_ PR —
5" 2 7%2

(91)3 2

-1
C_ —_—
Iz,

0z

). (5.12

2

The incompressibility condition can now be used to
sharpen the estimate. Note first that by multiplyingV0-v
by dvs/dz we have

O')Ug 2

0=%7

(9U3 aUl
Jdz JXx

(3’03 (9U2

9z 3y (5.13

Integrating(5.13 over the volume and integrating by parts
on the right-hand side to exchange the derivatives, we find

(9U3 2 (701 (9U3 0”U2 ﬁvg
== + | {—=—=+—=—}dx. (5.
0 ‘azz f[az ox "oz oy [P G149

Likewise, squaringdv s/ dz= — (dv 1/ Ix+ dv,/ dy), integrat-
ing, integrating by parts on the cross term, and rearranging
yields

&Uz 2
ay 5

(9U3 2
0z 5

(9U1 2

(91)1 (902
X 5

gy ax

(5.19

Now, adding twice(5.14 and once(5.15 to [Vv]3, we de-
duce
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, |1 v, 2 Jlavy  dvs|? |ov, vgl? The_n u_sing(5.16), the_ functional defining the spectral con-
IVv]5= 9y ax , a7 " ax , 9z Ty , straint is seen to satisfy
2 1
+4‘% Hw{V,ﬁ}:f [m|VV|2+[¢(Z)—Z]039+ 31V 6%} dx
Jz )
1 4 |dvgl?
dvs||? > R b —
> ‘—3 . (5.16 >J“0|2Ra gz| tL¥(2)=2lvab
Jz )
_ 26|
Thus(5.12 may be rewritten + 3172 dz|dx dy
f 2 ed<5cv2+lve2
[#(2)=2Jos0 A =7 | 7 [VVl2* S IV a2 - [ Kosteyno0xy dxay. 629
(5.17

Hence if K, (defined for functions oreze[0,1]) is non-
negative definite, then so i$,, (defined ond and divergence

1 s free v satisfying the boundary conditions under consider-
)|Vv||§+ (5_ 4—) IV 63 ation). This implies that the result of the minimization prob-

¢ lem over y(z) constrained byK ,=0 is an upper bound on

(5.18 the result of the minimization problem ové(z) constrained
by H,=0. We have thus derived an alternative, albeit
weaker, variational bound on the heat transport:

The functionalH ,{v,6} may now be bounded below:

1 oc
2Ra 16

H v, 0}=

First choosec= /2 so that

1 52)
H{v,00=| =—— —|[|VV|3. 5.1 1 (1
A= 7Ra 32 IVviz 619 Nu<1+> f P(2)%dz, (5.24
0
To ensure the spectral constraint, then, we choose the bound- . o
ary layer thickness according to for functions¢(z) satisfying
4 1
S=——. (5.20 fo #(2)dz=0, (5.29

We may now evaluate the upper bound on the convectiv@1nd the spectral constraint

heat transport: 11 172
< - 24—
0 fo [ 5 (Dw)“+ 7

1
1 1 1 [¢(2)—2]w6+ 5 (DO)?dz,

2

(5.2 whereD =d/dz and the test function&(z) and 6(z) vanish
valid for Ra=64 so thats<1. atz=0 and 1.[The integration variable ; in the functional

We may improve this estimate slightly, reducing the pref-Ky in (5.22 has been replaced hy=(y4/Rays in (5.26) ]

actor, although leaving the exponent alone, by utilizing thel his variational bound is necessarily higher than the original

variational technology for the optimal profile. That is, we canformulation because the new spectral constraint is stronger,

solve a simpler related problem that is not completely Opti_but the minimization can be carried out exactly, which, as

mal, but still produces a rigorous result. The calculation proVill P& shown below, leads to an improved prefactor as com-

ceeds in two steps: first, the variational problem is reformuP@réd to the nonoptimal result 6.21.
lated with the spectral constraint replaced by a new The spectral condition for this minimization refers to the

constraint, stronger than the original but simpler in form,Sign of the lowest eigenvalue of the self-adjoint problem

and, second, the optimal profile subject to the new constraint
is found exactly. This exercise illustrates the implementation AW= — D2w+
of much of the variational machinery and will be useful for
giving insight into the nature of the ultimate optimal solution
discussed in Sec. VI.

For functionsv4(z),6(z) vanishing atz=0 and 1 define
the functional

Ra 1/2
B a-2e s21

1/2

N0=—D?6+ [4(2)—2]w. (5.28

This eigenvalue problem may be “diagonalized” by going

1 4 |ovgl? d d bl
KW{US’Q}ZJO{Z_REl% +[¢'(Z)_2]U30 to new epen ent variables
1
1|a6)° f(z)=—=[w(2)+ 6(2)], (5.29
E%sz 5.22 (@)= [W(2) +6(2)]
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1
g(Z)=E[W(Z)—0(Z)], (5.30 'r
whereupon(5.27) and (5.28 transform to @
112
AM=-D?%f+|—| [¢(2)—2]f, (5.30)
0 s p !
112
Ag=—D?g— (Z) [¥(z)—2]g (5.32 FIG. 7. Functionf(z), the solution 0f(5.41), for Ra=2000.

for real functionsf(z) and g(z), z<[0,1], with Dirichlet wherea and g are Lagrange multipliers to be thermined by
boundary conditions. Some care must be taken at this poinf?€ mean-zero conditiofs.25 and by the condition that the
the ground state eigenvalue @& 27 and (5.2 is the lesser 9round state eigenvalue .35 vanishes. Imposings.29),

of the ground state eigenvalues for the independent problen}$sing the normalizatio(.36), and integrating5.38), we see
(5.31) and(5.32. Equivalently, non-negativity of ;{vs,6} is that« and g are related by
the same as non-negativity bbth

Ra 1/2
. 11 , 1(Ra? , O=a+p| (5.39
Ky {f}= = (Df )+ = | =] [W(z)—2]f°dz
¢ ol 2 2\ 4
(5.33 Hence the Euler-Lagrange equation iiz) is
and W(2)=af(z2)?>—a. (5.40
i1 1 [Ra|Y? Inserting(5.40 into (5.39 and enforcing the.®=0 con-
R 5 5 : :
Kyigh= fo [ > (DY) —5 (Z) [¥(2)=2]g ]dz. straint, we arrive at the nonlinear Schioger (also known

(5.34  as Duffing equation forf:

Therefore the set of appropriate mean zgrover which we )
need to minimize is the intersectior{lpiK;;O and 0=-D+
K, =0}={yiK ;=0}nN{y/K ,=0}. Note that among mean-
zero functionsi(z), {¥{K, =0} contains y=0 for every | the order we have formulated it here, the nonlinear bound-
value of Ra; This suggests what we will now do: vary overgry vajue problem ir(5.4)) is to be solved and thea is to
the set{y/K, =0} and afterward verify that the ensuing ex- pe adjusted so that the normalization condition(3:86) is
tremal function is in{y{K ,=0}. This guarantees that the so- gnforced.
lution we produce is indeed the true minimum over the in- Equation(5.41) is relevant only for Re&7*~97.4; below
tersection and is roughly analogous to the max-mifai =0, y=0, the purely conductive background profile
procedure described in Sec. IV for the full optimal problem. gatisfies the spectral constraint, and=Nlu Above Ra=7*
So consider the eigenvalue problem the exact solution of5.41) is given in terms of Jacobi ellip-
112 tic functions and this calculation has been fully carried out in
_ - the context of shear flow in Ref12]. The solutionf(z) is
2 ) [¥(2)—2]f (5.39 . : . . :
single signed and symmetric about the middle of the interval
[0,1], as illustrated in Fig. 7. The large Rayleigh number
asymptotic solution td5.41), valid for Ra—, is easier to
manipulate analytically and that is how we will solve the
1 problem here.
1= f f(z)2dz, (5.36 From the exact solution we observe that- as Ra—»,
0 so in the limit theD?f term is negligible away from the
boundariez=0 and 1. Hence, in the middle of the interval

1/2
7) [af(2)?— a—2]f. (5.41

AM=-D3+

for real functionsf(z), ze[0,1], with Dirichlet boundary
conditions. With the normalization

the variation of the ground state eigenvalue is f(2) is approximately
DN Ra 2 12
_ 2 a+2
Sp(z) \ 4 @ (539 f(@)~|—— (5.42

and so the Euler-Lagrange equations for the optignad Near the boundary a&=0, we change the independent vari-

S 1 (1 1 able to
0= = | W(2)%dzt+a w(z)dz+,8)\(°)}
oP(z) | 2 fo fo X=Cz, (5.43
1/2
=)+ a+p Z) f(2)?, (5.3  where
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a+2 [Ra 1/211/2
= T T y (5.44)
and the equation becomes
d?f @ 3
WZZEHX) —2f(X), (5.45)

with boundary conditions
a 1/2
f(0)=0, f(X)H(T) as x—«. (5.4

The exact solution 0f5.45 and(5.46) is

1/2

tantx, (5.47

a+
f<x>=(7

which is seen to match up perfectly with the approximate;[u
solution away from the boundaries. This is the asymptoti
form of the solution on the first half of the interval, and
composite solutions, uniformly valid over the entire interval
, can be con-

within exponentially small error of ordes™ ©

structed either additively,

a+ 1/2
f(z)w(T [tanfCz+tanlC(1-2)—1], (5.48
or multiplicatively,
a+?2 1/2
f(z)%(T taniCz tanhC(1-2z). (5.49

The value ofa may now be determined by the normaliza-
tion condition in(5.36), which is written on the half interval

as

12 2 rcr
1=2f f(2)°dz= = f f(x)2dx
0 CJo

2 at+2

C «

C C

E—tanhE

. (5.50

Neglecting exponentially small terms of ordet©, this be-
comes

a+?2 2
yielding
Ra 1/2
a+2=~ 16 (5.52

On the first half of the intervdl0,1] the asymptotic form
of the optimal functiony(z) is

W(2)=af(z)?— a~(a+2)tanif Cz—a. (5.53
Note then that
W(2)—2~(a+2)[tanit Cz—1]<0, (5.54
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1(2)

Z

FIG. 8. Optimal background temperature profile of the modified
variational problemg(z) resulting from(5.54), for Ra=2000. This
profile is appropriately compared with the trial profile in Fig. 6,
where the boundary layer in the profile was sketched with the thick-
nessé chosen according t(6.20 with Ra=2000.

so the functionaK , is manifestly positive. Hence the&(z)
hat we have constructed here is indeed the true optimal so-
tion. [That this procedure—constraining the variation only

cby the conditionKZzO—yields the true optimal solution

does not depend on the use of asymptotic methods; directly
from (5.4]) it is an easy exercise in one-degree-of-freedom
Hamiltonian mechanics to show that the exétt) <2 point-
wise ]

We are now in a position to evaluate the upper bound in
(5.24). Recalling(5.40, we find

1 (1
Nu<1+ = f W(z)%dz
2 Jo

2
—1+ L fl[f(z)“—l]dz
0

a? [ci2 . o’
—1+Efo f(x) dx—7

(a+2)? (cr o’
~1+—¢= fo tantx dx—7. (5.55

Within exponentially small terms

cr2 " C 4
fo tani'x dx~ > 3 (5.56)
the upper bound reduces to
1 (1
Nus1+§f y(z)°dz~% Ra’—1, (5.57)
0

a 33% reduction in the prefactor over the cruder estimate in
(5.29). It is interesting to see that the structure of the optimal
background temperature profile for this alternative formula-
tion was qualitatively captured by the trial profile {5.4),
illustrated in Fig. 6. In Fig. 8 we plot the optimal profile for
the alternative minimization problem; note the presence of
the stable temperature stratification in the middle.
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VI. OPTIMAL BOUNDS UTILIZING be considered “trivial” in the sense that each yields parallel
THE EULER-LAGRANGE EQUATIONS ¢ and hence the same normal vector to the isospectral sur-
ce.

_ . . . a
The analysis in the preceding section was carried througFm Eliminating u andp in (6.6~(6.10, then, we obtain

without fully utilizing the incompressibility constraint on the
velocity vector field. Incompressibility tends to lessen the
normal component of the velocity near a no-slip surface be-
cause the vanishing tangential components force the normal 0=k 2(—D2+k®)2w+ VRa ¥(z)—2]6, (6.11
derivative of the vertical component to vanish also. Hence it
is expected that this feature may allow for a wider boundary
layer while maintaining the spectral constraint, and hence a
lower estimate on Nu. What we will show in this section is 0=(—D2+k2) 0+ VR 4(2)— 2]w. (6.12
that the full optimal solution can take advantage of this effect
and produce a lower scaling of the upper bound. Although
we will not explicitly solve the optimal problem, we will
deduce properties of the optimal profile from the Euler-Whenw and# are the unique solution ®.11) and(6.12, as
Lagrange equations derived in Sec. V. Here we study theve will consider for convenience, then without loss of gen-
case where the optimal profile lies on a codimension-1 porerality they may both be taken to be réilthey were com-
tion of the marginally stable isospectral surface, so that th@lex beyond a common phase factor, then the real and imagi-
ground state is nondegenerate and the single wave numbeary parts would each be independent solutioriEhe
solution applies. functionalH , for this solution vanishes:

First we show that when there is no background flow
field, the three-dimension&BD) problem can be reduced to
a 2D problem. Suppose we have the solution to(o;che Fourier i1
transformed eigenvalue proble#.28—(4.32 for A'9=0: O:f [ = (D?w)2+2(Dw)?+ k?w?+ (D )%+ k262
0=(—D2+k)u+ikyp, (6.1) 0

(D24 k2 4
0=(—D2+k?)v +ikop, (6.2 +\/4_|:\>g{¢(z)—2]w0]dz. (6.13

0=(—-D2+k:)w+Dp+ VR y(z)—2]0, (6.3

O=iku+ikyv+Dw, (6.9
The optimal temperature gradient profil§z) is related to
0=(-D2+k?) 6+ JRd ¢(z) — 2]w, (6.5  w(z) and6(z) as in(4.35,

whereD=d/dz and ¢ is related tow and 6 by (4.35. The

appearance of Ra has been “symmetrized” as in Sec. V. As

outlined in Sec. IV, the wave vectér=(k, ,k,) is presumed o o

to have been chosen among the poslsibizlities to maximize zp(z):a(w(z)a(z)—fo w(z')6(z")dz ) (6.14
fy#. Then the change of dependent variables fronand

v to ucosetuvsing and —usineg+v cose, where

tan o=Kk,/k4, yields

where the Lagrange multipliet has been properly adjusted

—_ 2 2 H
0=(=D+k9)u+ikp, (6.8 50 that the solution exists and is normalized according to

0=(—D?+k?pv, (6.7

0=(-D2+k®)w+Dp+Rd ¥(2)—2]6, (6.9 1 1
1=f (F(Dw)2+w2+ 6%1dz. (6.15
O=iku+Dw, (6.9 0

0=(—D2+k?) 0+ R (z) — 2]w, (6.10

Based on the experience gained from the analysis in Sec. V,
wherek=|k|= \/k21+ k22, which does not vanish; there is no we expect the solution(z) to be everywhere less than 2
normalizable solution fok=0. Equation(6.7) is uncoupled with negative values in the boundary layers. Likewise, we
and because the newandv satisfy homogeneous Dirichlet expect the produciwv(z)6(z) to be everywhere positive,
boundary conditions a&=0 and 1, the solution fos is pre-  analogous to thé(z)? from Sec. V; see Fig. 7. The Lagrange
cisely v(z)=0. The remaining problem is just that derived multiplier a>>0 [because of the parallel—not antiparallel—
from 2D convection in the-z plane, with the length in the  alignment of the vectors in Fig.(8)] and we expect it to
direction an integer multiple of2k. It is possible that there scale as a positive power of Ra.
are more than one vectois for the optimal solution, in The upper bound on the heat transport may be expressed
which case the resulting degeneracy of the ground state mag terms of the eigenfunctions, usiri§.13 and(6.14), as



53 VARIATIONAL BOUNDS ON ENERGY ... . lll. ... 5973

1 r1 1 1 11
Nu-1<z | #¥(2)%dz f wo dz>—f [— D2w)2+2(Dw)2+ k2w?
2 Jo 0 J16 RaJo 2 (D7W)™+2(Dw)
fl| 0 ! ! (D?w)2+2(Dw)?
=a Wo— —— | (D*w w
0 V16 Ra| K
a +(D0)2+k202]dz. 6.17)
+k®w?+ (D )%+ k%62 ]dz . (6.16

Becausen is positive, this implies that the optimal solution Likewise, « may be expressed as a ratio of integrals of the
satisfies solution

! _; i 2 2 2 2\p,2 2 22
fO|W0 N k2(D w)“+2(Dw)“+kw + (D 6)+k=6| ;dz
a:2 1 1 2 (61&
f (W(Z)G(Z)—f w(z')6(z')dZ' | dz
0 0

and the bound on Nu is explicitly

2
1
2 (D?w)2+2(Dw)?+ k?w?+ (D 6)%+ kzezl ] dz)

1 1
(L[We‘ /16 Ra
1 1 2
f (W(z)ﬁ(z)—f W(z’)ﬁ(z’)dz’) dz

0 0

1 r1
Nu—1<§f0 W(z)?dz=2 (6.19

At this point that we may establish a relationship between the optimal background field method and Howard'’s upper bound
theory. Utilizing (6.17), we can throw away part of the numerator(119 to derive an upper bound on the upper bound:

ool - )

1 1 2
f (W(Z)B(Z)—f W(Z')H(Z')dz') dz
(6.20

1
2 (D?w)2+2(Dw)?+ k?w?+ (D )%+ k2 6?

1 (1
Nu—1$§f W(2)%dz<2
0

0 0

The right-hand side above is precisely the expression for thactor.[Some of the prefactor discrepancy may be absorbed in
heat transport at Rayleigh number 4 Ra utilizing the statistithe estimate going front6.19 to (6.20.] The correspon-
cal stationarity closure and single mode hypothésisich is  dence in(6.21) can in fact be made at an earlier stage in the
apparently true for not-too-large Ranade by Howard ifi5]. analysis, prior to Fourier transforming, to elucidate the gen-
Those hypotheses and that derivation, as well as the factordral connection between the estimates and this too is re-
rescaling of the Rayleigh number, is discussed in the Appenserved for the Appendix. We may exploit this correspon-
dix, where a brief review of Howard's approach is presenteddence to utilize techniques from Howard’s revigi¥(a)] to
Howard’s upper bound is sought as the largest possible valugirectly estimate the magnitude of the right-hand side in
of the homogeneous functional @f(z) and 6(z) in (6.20), (6.19; in (6.19 w and 6 are the solution 0f6.11), (6.12,
maximized over functions satisfying the boundary conditionsand (6.14), but an upper estimate may be established by
and fw@ dz>0. If we call the bound in6.19 B(Ra) and bounding the largest value of the ratio of integrals over an
Howard’s bound—the supremum (.20 at a quarter of the enlarged function space.

Rayleigh number-B(Ra), then First note that because the ratio is homogeneouws &md

# and fw# dz>0, the normalization may be adjusted so that
Nu—1<B(Ra<By(4 Ra), (6.21

where the second inequality is striébr nonstationary flows 1= flw(z) 6(z)dz. (6.22
the first inequality is strict too When the estimates scale 0

with Ra, the bound derived by the optimal background field

method is less than that of Howard's method modulo a prefThen we seek the largest possible value of the ratio
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jof

1
2 (D?w)2+2(Dw)?+ k?>w?+ (D 0)%+ k?6?

- mm

- 6.23
fo [W(2)6(z)—1]%dz

1
Al (D?w)?+2(Dw)?+k?w?+ (D 6)?

over functionsw(z) and é(z) satisfying the normalization in 1
(6.22, boundary conditions (f {

0 V16 Ra
2
w(0)=Dw(0)=6(0)=0=w(1)=Dw(1)=6(1), + k%62 dz)
(6.24)
| 1 1/3
_ 2, 2
and, from(6.17), the constraint SIo'l J16 Ra fo (D*w)*dz
L 13) 2
11 X J (Da)zdz] ] . (6.289
fo | 2 (DZW)2+2(DW)2+k2W2+(D0)2+k202}dz 0
Defining
<+4/16 Ra. (6.295
1 1/ 1 1/4
X= J' (D?w)?dz A[f (D#)%dz (6.29
We now use two of the technical results from Rigf6(a)], 0 0

which we will refer to as Howard’s Lemma | and Howard’s ) ) )
Lemma II. The proofs of these lemmas are sketched in th@"d Using Howard's Lemma 6.28 inserted into(6.19
Appendix. yields

Howard’s Lemma IFor functionsw(z) and 6(z) satisfy-
ing (6.22 and (6.24), there is a positive absolute constant

2
1 (1 2 C
Nu—1s§f ¢(z)2dz<—X{O,1— ! x4’3].
0 |

C,>1.30 such that C V16 Ra
(6.30
1 Not knowing the value oX, we maximize over it to con-
| w1770z Clade that
1 -1/ 1 —1/4 3/4
2 4(3416R
=C J D2w)%dz f D#)%dz| . Q== |2 < /8
.[ O( ) A[ 0( ) Nu—1< c7l7 ¢ <0.257 R&®%  (6.3)
(6.26

This bound is valid so long as the optimal background tem-
perature profile has a nondegenerate ground state. We do not
prove when this is the case; from the numerical analysis in
Ref.[15] we observe that this is the case for</23 300. The
optimal background profile has a degenerate ground state
above Ra=23 300 and the single wave number solutions are
no longer relevant to the problem.

Howard’'s Lemma Il.For functionsw(z) and 6(z) satis-
fying (6.22 and (6.24), there is a positive absolute constant
C,>2.20 such that

1
fo [ % (D?w)?+2(Dw)?+k*w?+ (D )+ kzﬂz]dz VII. DISCUSSION
T 13 The analysis presented in this paper establishes a funda-
3[[ (DO)2dz| |, (6.27  mental and mathematically rigorous connection between the
0 conditions forstability and the seemingly unrelated dynam-
ics of unstable; unsteady convective motions including
bulence This connection relies in an essential way on the
uniformly in the wave numbek. relationship between the viscous Boussinesq dynamics and a
These lemmas are utilized as follows. Howard’s Lemmarelated inviscid systen(in the previous papers of this series
Il asserts that in the regime whe(@.25 holds, the numera- the connection between Navier-Stokes dynamics and the in-
tor of (6.23 is viscid Euler equations was exploited’he association of in-

BC”[ fol(Dzw)zdz
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viscid dynamics and turbulence is certainly not new, going(not just the boundary laygis stable(in the sense of non-
back at least to the scaling ideas of Kolmogorov, nor is thdinear energy stability then the we may deduce an upper
use of marginal stability criteria to help explain characteris-bound from it. The 3/8 scaling derived in Sec. VI is entic-
tics of turbulent systems. But to the best of our knowledgengly close to the classical 1/3 exponent, although its region
the quantitative approach to turbulent dynamics in theof validity is relatively restricted.

Navier-Stokes and Boussinesq equations introduced and de- o number of theories for the hard turbulent NR2'”

veloped in_ this ser_ies of papers is the first to give a rigoro_ugca"ng have been developed in recent yda®, most of
mathematical basis to this conception. While there remainghich directly exploit the observed large scale circulation,
much to understand regarding the interplay of viscous anghich poth provides a stabilizing shear for the boundary lay-
inviscid properties of fluids and the|r. motions, the te_chmquesers and globally organizes the motion of smaller scale ther-
develpped here offer an altemnative view of this long-p plumes responsible for much of the heat transport. The
standing problem. implementation of a background flow profile together with

The next question is to determine the utility of this ap-yhe temperature profile is an obvious way to investigate this

progch. Th? S|mpI|f|cat|on$ made in S?C' V allowed us tophenomenon in the context of the analysis presented in this
derive a rigorous analytic upper estimate of the form

2 ; . . paper, as well as to bring the Prandtl number into play re-
V'\\Ilgw diﬁvésngnuisr;ngrgcg dogt;rt?gg?:il:fgrt?]léngorﬁliggeg()dsgarding the bounds. These issues remain a challenge for the
when the optimal background profile has a nondegenerate
ground statdi.e., just one marginally stable modevhich is
the case only for a bounded range in @a<23 300 [15].

The asymptotic NeRa'’? scaling follows from Kraich-
nan’s statistical turbulence theory closure md@s] [which

X additionally  predicts  logarithmic  corrections to
(These are also the scalings found by Howdfd) For Nu~Ra"%(In Ra)~%?] as well as from Howard's upper bound

higher Ra the opt_lmal_background profile has a degeneratﬁeory[%]. So it appears that the rigorous bound resulting
ground state and it is likely that the degeneracy cpntlnuest om the simplified calculation in Sec. V, NtRa¥2 is in
Increase so t_hat more an.d more modes are marginally stab cord with the asymptotic scaling expected on the basis of
as the Raylelgh number is mcrc_eased. . . statistical turbulence theory, at least to within logarithms,

HO.W good is the result O.f this analy§|s In comparison 10,y ith the asymptotic scaling anticipated by experiments.
theories of turbulence, to direct numerical simulations, ancfl These results are all encouraging, and it is natural to in-
ultimately to experiments? And how practical will it be to vestigate where there might be room,for improvement in the
fully exploit the methods proposed here? Can real Improveggiimates The analyses in Secs. V and VI was simplified by
ments in the rigorous pred|ct|9ns be expected from furthefaxcluding a background flow field. Because large scale shear
development of this mathematlcal procedurg? . is known to be an important component of the heat transfer

Experimental studies of thermal convection show dn‘fer-in the hard turbulent regime, it will be interesting to see if the
Shclusion of a background flow improves the exponent in the
bound. Because the elementary methods used in Sec. V will
likely not reveal enhanced stability resulting from an im-
posed shear, the spectral constraint will almost surely have to
be imposed exactly in order to see improvement. As previ-
‘ously noted, another interesting aspect of the problem that
has been discarded in the no-background-flow case is the
Prandtl number dependence of the heat transport. The
Prandtl number enters this variational approach nontrivially
only in the background shear contribution in the spectral
constraint.

gimes[17]. Not too far above the critical Rayleigh number
where convection sets in, NtRa”® scaling is observed, and
at higher Rayleigh numbers there is a crossover to-Ref’”
scaling, a region of the dynamics known as “hard turbu-
lence” [18]. Some recent experiments indicate the emer
gence of another boundary lay@hrinking~Ra *?) signal-
ing an impending crossover to another region of-NRe2
scaling[19], which is the scaling we have proven here is an
absolute upper bound.

The /;classical” theory of convection explains the
Nu~Ra"? behavior by invoking a marginal stability condi- Ideally the variational problem for the optimal back-
tion on the conduction boundary layg20]. The argument

be simol d as foll Cif inall ble th ground profile laid out in Sec. IV will be solved exactly to
may be simply stated as follows: If a marginally stable t er'yield the best estimates that this method has to offer. Al-
mal boundary layer of thicknes8 (in dimensional units

: . : i ; though it is unlikely that exact analytical solutions will re-
forms, in which there is essentially no flow, then it must be g y y

hat the Ravleiah ber based d half th sult, direct numerical solution of the nonlinear boundary
that the Rayleigh number based érand half the tempera- 5,6 problem is possiblEL5] and those results will be dis-
ture drop(the other half occurring across the other layier

. ) cussed elsewhere. As far as analytical work is concerned, it
the critical Rayleigh number RaThen is likely that matched asymptotic methods, such as those
3R used to findf in Sec. V, may be fruitfully brought to bear.

_a. (7.1) Given the similarity of the nonlinear Euler-Lagrange equa-
2 tion with those of Howard'’s theory, it is expected that some
of his and Busse’s asymptotic methods may be applied.
The Nusselt number scales 88!, so this argument leads to ~ The two-dimensional version of the convection problem
the Nu~Ra® prediction. Compelling as this idea may be, it will be worthwhile to study in detail: direct numerical simu-
is far from a rigorous argument, e.g., Raiill defined due to  lations in two dimensions display both the NRa® and
the ambiguity of the boundary conditions to which it refers.Ra&” scalingg 24,25, and special mathematical properties of
The rigorous background field method presented here cor2D flows may be useful for the analydi&6]. Hence inter-
tains some strikingly similar features: if the entire profile esting behavior, with some of the characteristics of full 3D

Rac:ga(éT/Z)éG_( )

“lh

VK
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turbulence, may reasonably be expected from this simplifiedontext of Howard's theory applied to shear flow problems
problem. The Euler-Lagrange equations for the optimaland is discussed in that context in Busse's review, Ref.
background fields with a unique ground state in two dimen{16(b)].
sions are obtained from the results of Sec. IV by settind® Once the optimal profile has been obtained, whether for
andk,=0. Then the horizontal velocity componanand the the 2D or the 3D problem, the self-adjoint eigenvalue prob-
pressureq may be eliminated, yielding a pair of coupled lem associated with the spectral constraint leads to consider-
equations fow(z) and{(z). The problem becomes ation of the complete set of eigenfunctions. These eigenfunc-
tions will span the fluctuations about the background fields,
and when the background profiles are optimal they provide a

0=0(—D?+k?)2w+ikD[ ¢(z)W]+ik $(z)Dw functional basis that is uniquely “adapted” to the turbulent
5 flows, generated in a unique way from the fundamental equa-
+o Re&kTy(z)-2]¢, (7.2 tions of motion. It will be interesting to look at the structure

of those flow fields with the hope that elements of the turbu-

lent dynamics may be illuminated in these coordinates.
0=(-D?*+K*){+[¢(2) - 2]w, (7.3 Those modal dynamical systems also offer a systematic

approach to obtaining corrections to the best upper bounds

with boundary conditionsv, Dw, and ¢=0 for z=0 and 1. produced by the optimal background fields. Indeed, recalling
These equations are closed with the expressiongfamdyy,  (3.19 we may assert the equality

#(2)=i[Dw(z)*w(z)-Dw(z)w(z)* -1}, (7.4 2(Nu—l)=i flqs(z)zdz—i-flw(z)zdz
Ra Jo 0

W(2)=H{(D*W(2)+ {(2)w(2)* —1}. (7.9 +iim sup<—§H¢’,,,{v,0}> 19
t

t—oo
In this formulation the Lagrange multipliey is adjusted so

that the solutions satisfy Labeling the modegv,,6,} of the spectral problem in the

order of their magnitude ®\?<\Y<\@<.-..  we see that
1 the general nonlinear solution for the fluctuation may be
f ¢(z)dz=0, (7.6 written
0

Vx| < Vn(X)
e(x,n)zz ""”“)(en(x> : (7.10

n=0

flw(z)dz:o (7.7)
0

Then(7.9) may be reexpressed in terms of the time averaged

and the bound on the Nusselt number is squared modal amplitudes

1/1 (1 1
= 2 2 1 1 1
V=145 | g f ooz [ dz)’ (79 2Nu-1)= . [ a2z [ w7z
where the wave numbdy is varied(over a discrete param- R - )
eter set+=2xn/L, or over a continuous range for the most —lim inf —+ ngl N (Jan()[%). (7.19)

s

general situationto maximize the right-hand side ¢7.8).
Further study of this particular problefderiving solutions
and/or estimates, determining the stability of the resultingncluding the contributions from the modal dynamics one by
background profiles, etcremains for the future. one produces a monotonically decreas{agd thus conver-

It should be noted that the 3D problem with a backgroundgeny sequence of upper bounds. If the optimal background
flow is not directly reducible to a 2D problem as is the casefields have a degenerate ground state, then modes beyond
when ¢ is taken to be zero from the beginning. Nor, for thatthat number must be included before any decrease in the
matter, do 3D shear flow problems, such as those studied inpper bound occurs.
the first two papers in this series, Rdig, 12, reduce iden- Of course the exact modal dynamics is not available be-
tically to 2D problems. It is interesting to note that for plane cause the complete set of coupled amplitude evolution equa-
parallel background flow fields the 3D shear of problem oftions has the same overall complexity as the original partial
Ref. [8] maps onto the 2D convection probleifnit is as-  differential equations. But we may truncate the amplitude
sumed that the most energy-unstable mode in a plane parallelolution equations to obtain approximate dynamics for the
shear flow is homogeneous in the streamwise direction. Thisrodal amplitudes. These “Galerkin truncations” will lead to
is not known to be the case; this question also arises in th&nite-dimensional dynamical systems models, akin to the re-
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duced models derived from the proper orthogonal decompastable(or stablg “on average” in the sense that long time
sition[27]. In fact, the modes derived from the spectral prob-averages oH,, , vanish (or are positive. This is a weaker
lem associated with energy stability analysis have previouslgonstraint than we have used in the analysis here, but it is
been used for this purpo§28], the ultimate goal of this kind awkward to impose because to exploit this relaxation re-
of theory being to develop control strategies for turbulentquires some knowledge of the averaging process, i.e., some
flows [29]. Further applications notwithstanding, the Galer-control of the temporal statistics of the solutions of the full
kin truncations can provide a systematic—albeit not rigor-nonlinear problem. As we have seen in the foregoing analy-
ously bounding—sequence of estimates when uséd. irl). sIs, estimates O_f the magnitude of the globgl transport depend
It is natural to be suspicious of the ability of any low- ON the regularity of the allowed fluctuation fields in the

dimensional dynamical system to capture the essence of fulljoundary layers. The likelihood that an appropriate sense of

developed turbulent motions. The conventional picture for, averaged regularity” of the fluctuations exceeds the uni-

the universal energy distribution in homogeneous isotropi orm regulamy utilized here apens the doqr to ;tud|es ex-
turbulence is the Kolmogorov spectruii{k) ~ s2/% 5" up ploiting statistical features of turbulent solutions in an alter-

to the cutoff wavenumber scale,,~-* (the inverse of the native way. That too will be left for future investigations.
Kolmogorov length scaley ~87174) where exponential de- In conclusion, the methods and results presented in this
K aper and in the previous papers in this series demonstrate

cay of the amplitudes sets in, so the energy dissipation ra . : . .
Y b 9y b the potential for rigorous analysis of the Navier-Stokes and

~k?E(k) is dominated by contributions from modes at the lated i : bl f direct rel to turb
small scales arounkl,,,,. There are very many modes in the related equations in probiems ot direct relevance 1o turbu-

wave number shells about this scale and hence it appeai%ncef' I'\fﬁngl ma:;hen:jagcal IchaIIentgefsﬂ:emaltn, r?u_t we afﬁ
unlikely that the energy dissipation can be quantitatively de- opetul that continued development of these techniques wi

scribed by just a few modes and certainly not by large scaléeSUIt in improved anal_ytlcal estimates and eventually to
structures such as low+Fourier modes or modes associated "€ fgndamental physical understanding of complex fluid
with a linearized evolution operatde.g., Stokes modgs dynamics.

But there are two key points where this account may be
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mode coming out of the spectral constraint are streamwise

oriented wall bounded vortices whose diameters are on the

scale of the boundary layer thickneg30], which at high

Reynolds number ismallerthan the bulk Kolmogorov scale

7k - The picture that emerges is one where the bulk dissipa- Howard’s upper bound theory, introduced in REH], is

tion is largely capturedand safely overestimated, appar- derived from the Boussinesq equations supplemented by a

ently) by the contributions to the dissipation rate boundshypothesis of statistical stationarity, i.e., the technical as-

from the background fields, while corrections due to thesumption that horizontal averages, and thus also volume av-

boundary layer structures are contained in the modal amplierages, are time independent. This is true for stationary

tude evolution taking place over the background fieldsflows, and for large aspect ratio systems it is a reasonable

Whether or not this picture will survive quantitative tests assumption; it could actually be valid in the limit of an infi-

remains to be seen. nite horizontal layer, but it has not been shown to follow
Finally, we recall that the effective stability condition on from the equations of motion and it is likely not true in

the background fields in the variational problems develope@eneral in finite systems. In this section we will denote hori-

in this series of papers is a stricter constraint than that whickontal averages by) and volume averages Hy)), and we

we really want to impose. The spectral constraint requiresyill use the notatioru=(u,v,w).

background profiles to be stable against all possible fluctua- The theory proceeds from the Boussinesq equations

tion fields, while in fact the basic calculation (8.15 shows

that all that is really required of.background fields prqducing a—u+u-Vu+Vp=0Au+a RekT, (A1)

exactresults (or upper boundsis that they be marginally

APPENDIX: HOWARD'’S THEORY
AND HOWARD’S LEMMAS
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V.-u=0, (A2) (A9). It is convenient to cast the variational problem in the
form of a nonlinear Dirichlet ratio, as follows.
Adding together the expressions for N from (A6) and

aT
—+Uu-VT=AT (A3 (A9) gives

ot

by deriving the relations analagous (.10, (1.13, and
(1.15 between the Nusselt number

Nu=1+((WT)), (A4)

and the dissipation rates. Invoking the statistical stationarity + (WO — ((W8)))2, (A10)
hypothesis, standard calculations yield

2(Nu~ 1) = 2((wo)= . (IVUl) + (17 612)

and rearranging slightly produces an expression for the iden-
Nu=((|VT|?)) (A5) tity:

and

2((w) | g (9 + (17 012
RelNu=1)=((|Vul*))- (A6 T dwe)—(wan D

(A11)

The temperature is decomposed into a horizontal avera

and a fluctuation gIgmally, multiplying by Nu-1=((w#)) gives

Nu-—
T(x,t)=(T)(z)+ 6(x,1). (A7)
1 1
2_ _— 234 = 2
The mean temperature profi{@)(z) satisfies the boundary _ {(wo)) <<W0>>{2 Ra<<|Vu| N+ 2 (vl >>}
conditions on the top and_bottorhT)(O):l and(T)(1)=0, =2 {{(woy—((way))2)
and sod vanishes there. It is easy to see that-Ni=((w6))
using incompressibility. The horizontal average of the tem- (A12)
perature evolution equatiofh3) combined with the bound- o ) ]
ary conditions gives Substitutingu’ =u/\Ra in place ofu and dropping the
prime, (A12) becomes
(T
(W) —((wo))= —éz> +1, (A8) Nu—-1
1
2 2 2
which, when inserted int6A5) to eliminate the mean, yields ((w6))"—((wo)) \/4_Ra[<<|Vu| N+UIVeIEH]
=2
(W)= {(w6)))?))
Nu—1=((|V6|%))+{(wo)—((w6)))?).  (A9) (A13)

In essence, Howard’s upper bound theory consists of maxi- Howard’s upper bound, denotd,(Ra), is sought as the
mizing Nu—1=({w#)) subject to the constraints {#\6) and  largest possible value of the homogeneous ratiGAih3),

((w6))?—((wo)) \/%REI[<<|VU|2>>+<<IV0|2>>]

{(wo) = ((w6)))?)) '

Nu— 1<By(Ra)=sup2 (A14)

maximized over divergence-free vector fieldsand func- in form with those for the optimal background field, but with
tions @ satisfying Dirichlet boundary conditions a0 and  different Lagrange multipliers in different places enforcing
1. This set contains all possible solutions of the originaldifferent constraints. This strikes us as a somewhat amazing
Boussinesq equations, so given the statistical stationarity hycorrespondence: the bound from tlegtimal background
pothesis, the resulting upper bound applies to the time aveprofile satisfies a relation that is similar in form to the foun-
aged heat transport. dation of Howard’s variational problem, i.e., a statistical
It is straightforward to check that the Euler-Lagrangepower balance. The correspondence for this problem is also
equations for Howard'’s variational proble@A14) coincide intriguing because of other fundamental differences in the
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approaches: the background field formalism allows for sym- 1 (1 )

metry breaking flow fields—the implications of which have Nu—1<z f ¥(z)°dz=B(Ra)

not been fully explored in this paper—whereas the statistical 0

stationarity hypothesis seems to inextricably force the sym- 1 2
metry of the geometry into Howard'’s variational problem. (((w6>>— [ VUl?) +{(V0]2))]
Moreover, it is not clear what would take the place of the V16 Ra

=2

horizontal averaging procedure in case the problem is posed {{wWO)y—({wh)))?)) '

in geometries without obvious symmetries; these are also (A14')

nontrivial problems for the background field method because

of the need there to identify the appropriate space of stablehere the paifu,6) is the solution ta(6.11) and(6.12). Be-

background flows and temperature fields. cause the Lagrange multiplier>0, the numerator above is
The expression itfA13) is remarkably similar to the op- the square of a positive number and an expression such as

timal upper bound(Ra) derived from the background field that in(A.14) is recovered as a strict upper estimate and the

method; in the present notatidf.19 is connection with Howard’s bound is established:
|
((w6))>=((w8)) L [V UlP)+ ([ V615)]
B(Ra) <2 16Ra <By(4Ra (A15)
{((wo)—((wo))*)) I '
|

For the estimate in Sec. VI, however, we did not attempt a 1 2 r1 ) vx 1 s 172
solution of the Euler-Lagrange equations. Rather, in the §=§{fO(D9) dz z[jo(D w) dl} . (AL19)

spirit of Howard's theory, we sought the largest possible
value of the ratio in(A14’) over a set of functions that con-
tains the solution.

We now turn to the proofs of the two technical lemmas
from Howard’s analysis in Ref16](a) that were used in Sec.

1
VI to bound the ratio. As will be seen, the analysis is very 1=f w(z)6(z)dz< 7>

Note thats<3; indeed, the normalizatiofiwd=1 together
with the Poincarénequality implies
1/ 1
Z[ f (D6)%dz
similar in nature to that used to derive the estimates in Sec. 0
V. 373

Howard’s Lemma IFor functionsw(z) and 6(z) satisfy- =55 (A20)
ing boundary conditionsw(0)=Dw(0)=6(0)=0=w(1)

=Dw(1)=6(1) andfw@#=1, there is a positive consta@}
such that

12

fl(Dzw)zdz
0

Then the integrand on the left-hand side(Afl6) is bounded
from below pointwise or0,5] as

1 1 —1/4
f[w(z)e(z)—l]zdzzcl[f (D?w)%dz
0 0

Z2 2
[1—w(z)6(z)]2>(1—gz) (A21)

—1/4
X (A16)  and similarly from the other end of the interval with-1

—z. Then,

1
f (D6)?dz
0

Proof. First note that in light of the boundary conditions (1
at z=0, using the fundamental theorem of calculus and the|,
Cauchy-Schwarz inequality,

[W(z)6(z)—1]%dz

5 2\ 2 1 (1-2)2\2
2 1 112 zf(l—? dz+J' (1— p )dz
|0(z)|=U DA(z')dZ'| <7 f (D6)%dz| . 0 1=9
0 0
(A17) 225[1(1—x2)2dx
0
Similarly, L —ug —ya
. 1 o —itomid [oorar ] [ onwre
|w(z)|=U dz’J dZ'D?w(Z") s%zm[f (Dzw)zdz}
0 0 0 (AZZ)
(A18)

Hence the lemma is proved aj~1.31 is an estimate for
Define the “boundary layer thicknessd according to the constant.
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Howard’'s Lemma Il.For functionsw(z) and 6(z) satis-

fying w(0)=Dw(0)= 6(0)=0=w(1)=Dw(1)=#6(1) and
Jwé=1, there is a positive consta@, such that

(1
MEJ [EZ(Dzw)2+2(Dw)2+k2W2+(D6)2+k202]dz
0

1 U 1 13
zc”“ (D?w)2dz f(De)ZZdz : (A23)
0 0
uniformly in the wave numbek.
Proof. First note that from the normalization,
1 1 1/2 1 1/2
1=J w(z)0(z)dz=< fw(z)2d2> (J e(z)zdz) ,
0 0 0
(A24)
S0
1t a2 2 [*2 1
M?PJO(D W) dz+k JOW dz+fW—2dZ)
1
+f (D6)%dz (A25)
0

CHARLES R. DOERING AND PETER CONSTANTIN

Then note that

=2, (A26)

1 ) 1
JOW dz+ fw?dz
SO

1 (1 1
M>pf (Dzw)zdz+2k2+f (DO)2dz.  (A27)
0 0
Minimizing over k?, we deduce

1 1/2 1
Mzzx/zU (D?w)?dz +j (DH)%dz.  (A28)
0 0

Using Hdder’s inequality (ab<aP/p+b%q for 1=1/p
+1/q) with p=3/2 andg=3 and appropriately chosenand

b, we see that
1/ 1
3“ (D6)%dz
0

This both establishes the lemma and provides a numerical
estimateC,~2.20 for the constant.

1 13
M 2(%)1’3{ f (D?w)%dz
0

(A29)
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